C.2 2-8-05

EPA Region 5 Records Ctr.

ADDENDUM TO THE EXPANDED SITE INVESTIGATION OF THE LAKE CALUMET CLUSTER SITE

For:

LAKE CALUMET CLUSTER SITE ILD 000 716 852 CHICAGO, ILLINOIS

ADDENDUM TO THE EXPANDED SITE INVESTIGATION OF THE LAKE CALUMET CLUSTER SITE

For:

LAKE CALUMET CLUSTER SITE ILD 000 716 852 CHICAGO, ILLINOIS

PREPARED BY:
ILLINOIS ENVIRONMENTAL PROTECTION AGENCY
BUREAU OF LAND
OFFICE OF SITE EVALUATION

February 8, 2005

The Illinois Environmental Protection Agency's Office of Site Evaluation was tasked by the United States Environmental Protection Agency (U.S.EPA) to conduct an Addendum to the Expanded Site Inspection of the Lake Calumet Cluster Site near the intersection of Torrence Avenue and 122nd Street in Chicago, Illinois (ILD 000 716 852). This Addendum is performed under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) commonly known as Superfund.

The objective of an Expanded Site Inspection (ESI) is to collect all data necessary to prepare a Hazard Ranking System (HRS) scoring package to propose the site to the National Priorities List (NPL). To fully evaluate the site and fulfill HRS documentation requirements, the ESI should:

- 1. Investigate and document critical hypotheses or assumptions not completely tested during previous investigations.
- 2. Collect samples to attribute hazardous substances to site operations.
- 3. Collect samples to establish representative background levels.
- 4. Collect any other missing HRS data for pathways of concern.

Site Description and History

The Lake Calumet Cluster Site (Cluster Site) is located within the Calumet Region of Southeast Chicago. It is comprised of a group of contiguous properties previously utilized as a former incinerator, drum storage facility, an undocumented waste disposal area, and a hazardous waste lagoon. These properties are located in the middle of an ecological rich area and have been previously investigated under the Superfund program. Time-critical removal actions have previously been undertaken on some of these properties by both the United States Environmental Protection Agency (U.S. EPA) and Illinois Environmental Protection Agency (Illinois EPA). Significant surface and subsurface contamination remains within these areas, and needs to be remediated if these properties are to no longer pose a threat to public health or the environment.

In 1995, a group of community leaders approached U.S.EPA and proposed that the Agency evaluate the properties within the Cluster Site for National Priorities Listing. At that time, U.S. EPA thought that the best approach was to work in coordinated efforts with the City of Chicago, the State of Illinois and other stakeholders to develop a strategy to address contamination on this site.

Together the four properties that comprises the Cluster Site form a rectangular parcel of land of approximately 87 acres in which Lake Calumet is located to the west and the Calumet River to the south and west. Nearby land-use consists of a combination of commercial, residential, industrial and open spaces. Scattered tracts of natural areas also exist near the site that serves as the home to a variety of birds, mammals, and native vegetation.

The Cluster Site is comprised of properties previously used by U.S. Drum II, Alburn Incinerator, the operators of Paxton Avenue Lagoons (Paxton Lagoons), and various

unauthorized hazardous waste disposal entities that used the Unnamed Parcel. The contaminants found at each of the properties are similar in nature. With the similarities in the contaminants, it currently is not possible to determine the boundaries of contaminant migration associated with each of these properties. Due to this inability to document the boundaries of the individual sources, the properties were combined to form the Lake Calumet Cluster Site.

Test pits dug during the 2000 Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Expanded Site Inspections (ESI) of the four source areas, show contamination below the water table, and consequently, documented an observed release to groundwater by direct observation. Ground water samples collected during the 2002 Groundwater Sampling conducted by the Illinois EPA State Sites Unit show contamination in the surficial aquifer. The average depth to water in the surficial Calumet aquifer is less than 15 feet below ground surface (bgs). A United States Geological Survey (USGS) report states that this aquifer discharges to local rivers, lakes, and wetlands, and that the aquifer is in hydraulic connection with the surface water bodies [USGS Water-Resources Investigations Report #95-4253, 1996].

Sediment samples collected during the 1999 CERCLA Expanded Site Inspection of the Interlake Property show contamination in parts of Indian Ridge Marsh. Surface water runoff from a portion of the Cluster Site flows into ditches along the perimeter of the source areas. These ditches drain into a culvert that discharges into Indian Ridge Marsh. Indian Ridge Marsh is a documented fishery, and a number of state and federal endangered species are located in Indian Marsh.

Because the four properties that comprise the Cluster Site encompass a limited geographic area, targets are similar for all sources. Groundwater, soil exposure, and air targets are essentially identical for all sites. Contaminated soil at the Cluster site contains numerous hazardous substances including inorganics, volatile organic chemicals (VOCs), semi-volatile organic chemicals (SVOCs), polychlorinated biphenyls (PCBs) and pesticides. Groundwater contamination includes numerous inorganics, VOCs and SVOCs.

Several acres of wetlands exist within the boundaries of the site. Many of these areas have been identified within the boundaries of the sources. Samples from the 2000 CERCLA Expanded Site Investigation documented Level II concentrations in sediments within the wetland areas. Level II concentrations for the environmental threat are established in samples in which the concentration of at least one hazardous substance meets the criteria for an observed release, but the conditions for Level I concentrations are not met. In addition, Level II is assigned for observed established by direct observation. Approximately 15 different federal and state endangered or threatened species are known to use the source areas and/or the adjacent marshes.

On each source, large areas of the surface soil and sediment have been shown to be heavily contaminated. Site sampling occurred in or near areas of standing water, and the

groundwater is shown to be very shallow and frequently in contact with the land surface and surface water.

During the week of November 29 through December 2, 2004, the Illinois Environmental Protection Agency's Office of Site Evaluation (OSE) conducted an Addendum to the Expanded Site Inspection to the Lake Calumet Cluster Site. This Addendum consisted of collecting shallow soil, sediment and surface water samples from the Cluster Site and from the property located east of the Cluster Site known as Indian Ridge Marsh. The purpose of this investigation was to determine if contaminants associated with the Cluster Site have migrated to areas within Indian Ridge Marsh.

Sampling and Field Activities Conducted During the Week of November 29, 2004

During the week of November 29, 2004, OSE collected 24 soil samples, 11 surface water samples and 18 sediment samples. Sample locations are presented in Sample Location Maps. On November 30, 2004, the OSE personnel arrived on site to conduct soil sampling along the Norfolk Southern (NS) Railroad. OSE contacted NS in order to access the NS property. Due to the intensity of the railroad traffic on this line, it was necessary to utilize a NS flagman for safety purposes. OSE personnel met and was accompanied by Bob Golf from NS to conduct safety instructions and procedures during sample collection on NS property. Soil samples X101 through X107 were collected from the ditch running parallel to the railroad tracks. Information concerning these samples can be found in Table 1 Sample Descriptions.

All samples were collected in accordance with the Illinois EPA's Quality Assurance Project Plan (QAPP).

Soil samples X108 through X119 were collected from the Cluster Site on November 30, 2004. Information concerning these samples can be found in Table 1 Sample Descriptions.

On December 1, 2004, sampling began in Indian Ridge Marsh (IRM). Surface water samples S101 through S108 were collected from the marsh from downstream to upstream, which is from south to north. After the surface waters were collected, sediment sampling began. Sediment samples X202 through X214 were collected on December 1 from south to north from downstream to upstream.

On December 2, 2004, sediment sampling continued. X215, X201 and X216 were collected from IRM. S110, X217 and X218 were water and sediment samples collected from the small ponded area in the southeast corner of the Cluster Site. S110 was collected before X217 and downstream from X218. Soil samples X120 and X121 were collected from the ditch paralleling 122nd Street and the southern border of the Cluster Site. S111 and X219 were collected from an area of standing water near the eastern portion of the site. Surface water sample S111 was collected prior to X219, the sediment sample. X122 through X124 were collected from different areas on and around the Cluster Site. Additional information about the sample collection depths and consistency

can be found in Table 1 Sample Descriptions. Sample locations can be found in Fig. 2 Soil Sample Locations, Fig. 3 Sediment Sample Locations and Fig. 4 Surface Water Sample Locations.

Upon analysis of the data and subsequent review, it was determined to use X203 for the sediment background and X103 for soil background. Surface water results were compared to sample S109 for background concentrations.

Upon review of the data, tables 2-7 were constructed to identify chemicals that can be considered as being an observed release when compared to background samples.

Photographs were taken during the investigation documenting sample locations. These photos are in Appendix 2. Also during the investigation photos were taken to document the flow of surface water from the site into the marsh. These photos documenting the overland flow route can be viewed in Appendix 3. Pictures were also taken of fishermen fishing in IRM (Appendix 2).

Inorganic samples were analyzed by ChemTech Consulting Group located at 110 Route 4, Englewood, New Jersey. Organic samples were analyzed by Ceimic Corporation located at 10 Dean Knauss Drive, Narragansett, Rhode Island.

		Table 1 Sample D	
Sample Number	Sample Depth	Collection Date and Time	Sample Description
X101	6-15 inches	11/30/04 0900	Sample was collected from the bottom of the ditch. Sample consisted of a mostly fine sand of a dark tan color. Sample also consisted of a sandy silt of a dark gray.
X102	2-4 inches	11/30/04 0910	Sample was collected from the embankment of the ditch paralleling the railroad. The sample consisted of a dark gray/brown loam with a few pieces of slag material. There were also some sands and fine slag.
X103	4-10 inches	11/30/04 1030	Sample consisted of a light brown/gray clay. Little or now foreign debris (leaves, roots, etc.) This sample was collected from the west embankment. Possibly this is material that was used to cap US Drum property.
X104	4-6 inches	11/30/04 1045	Sample was collected from a sandy loam near an area that is suspected of channeling surface water from the site into the RR ditch. This sample was collected from the embankment near the waterline in the ditch. The sample of sandy loam was a light brown/gray color.
X105	6-8 inches	11/30/04 1130	This sample was collected from the west embankment from an area of possible surface water drainage. The sample consisted of a light brown/gray silty clay material.
X106	2-6 inches	11/30/04 1215	This sample was collected from the west embankment of a gravely clayey silt. This was below a 2-inch layer of gravely material.
X107 (ms/msd)	4-6 inches	11/30/04 1300	This sample consisted of a sandy loam with very little gravely material present. This sample was located near the intersection of NS and 122nd Street.
X108	0-2 inches	11/30/04 1330	Sample was collected from a sandy brown loam the some chunks of slaggy material. Sample was collected from the top 2 inches due to a very hard material found at 2 inches below ground surface. This sample was collected just east of the entrance trailer located at the 122nd Street entrance.
X109	6-12 inches	11/30/04 1345	Sample was collected west of the entrance trailer located at the entrance of 122nd Street. Sample consisted of a sandy loam with organic material with some larger rocks and some slag material.
X110 (dup of X109)	6-12 inches	11/30/04 1345	Sample was collected west of the entrance trailer located at the entrance of 122nd Street. Sample consisted of a sandy loam with organic material with some larger rocks and some slag material.
X111	2-4 inches	11/30/04 1400	This sample was collected from a slag/rocky area. The location from which this sample was collected was a little northwest of the entrance trailer.

Sample Number	Sample Depth		Sample Description
X112	2-4 inches	11/30/04 1410	This sample consisted of a silty brown material with some slaggy material. This sample was near the western edge of the unnamed parcel, just east of the Paxton Lagoon area. Sample consisted of a rust
			colored material. This could possibly be rusty slag material. This sample was collected from the southwest corner
X113	2-4 inches	11/30/04 1430	of the Alburn property. Sample consisted of a gray/brown silty material with small rocks. The silty material is more rocky than the top two inches. Top inches are a more silty type fill. Some vegetation present in the area. Slaggy material present below 2 inches.
X114	2-4 inches	11/30/04 1445	This sample was located at the extreme northwest portion of the Cluster site. Sample consisted of a silty loam with gravel present. The area from which sample was collected had been recently graded.
X115	2-4 inches	11/30/04 1500	This sample was collected from the middle of the old Alburn property. Sample consisted of a silty gravel with pink/magenta colored paint chips. Some organic materials present (phragmites).
X116	2-4 inches	11/30/04 1515	This sample was collected near the southern area of the Alburn portion. Sample consisted of a reddish airy material.
X117	2-4 inches	11/30/04 1550	This sample was collected from the eastern portion of the wooded area north of the US Drum proper. This sample was collected from a crushed slag material which was gray.
X118	2-4 inches	11/30/04 1600	This sample was collected from the west portion of the Alburn area. Sample consisted of a brown loam with slag present in the sample.
X119	2-5 inches	11/30/04 1610	This sample was collected just south of X118 in the western portion of the Alburn section of the site. Sample consisted of a brown loam with gray slag chunks. Slag chunks present to 5 inches and below 5 inches was a layer of slag.
X120	2-9 inches	12/2/04 1000	This sample was collected from the ditch located on the south boundary of the site, paralleling 122nd Street. Sample consisted of a brown sand with very little silt. Sample had a strange smell.
X121	2-12 inches	12/2/04 1010	This sample was also collected from the ditch paralleling 122nd Street. The sample consisted of a dry loam that was brown in color.
X122	2-10 inches	12/2/04 1040	This sample was collected near the middle of the eastern edge of the site just west of the ditch with standing water from a small mound of soil. Sample consisted of a loamy soil with a reddish tint with some organic material and glass, slag, and a type of plastic material.
X123	4-6 inches	12/2/04 1045	Sample was collected just east of the sand/slag piles near the middle of the Cluster site. Sample consisted of an organic sand with glass and slag bits.

X124 2-9 inches 12/2/04 1135 This sample location was selected for a possible background location. Sample was collected from a dark brown gray loamy clay. Below surface of Water Sample was collected near the RR tracks in IRM. Water in this area is approximately 1.5 ft deep. S10 was designated as the triple volume. Sample was clear. Sample was collected from water that was 1.5 ft dee Sample was clear. Sample location was near the bottle neck in the area of the imaginary 121st Stree Depth of water in this area was approximately 1 ft. Sample was fairly clear. This sample was collected the northern end of the 1st thoroughfare.													
Sample Number	Sample Depth	Collection Date and Time	<u> </u>										
			122nd Street next to the biosolids processing plant. This sample location was selected for a possible background location. Sample was collected from a										
Bel	ow surface of W	ater											
S101	1 ft	12/1/04 0915	Water in this area is approximately 1.5 ft deep. S101 was designated as the triple volume. Sample was										
S102	1 ft	12/1/04 1000	Sample was collected from water that was 1.5 ft deep. Sample was clear. Sample location was near the bottle neck in the area of the imaginary 121st Street.										
S103	10 inches	12/1/04 1015	Sample was fairly clear. This sample was collected at the northern end of the 1st thoroughfare.										
\$104	1.5 ft	12/1/04 1030	Sample was collected from water that was 2 ft deep. Sample was clear. Sample was located near the middle of US drum property.										
S105 (dup of S104)	1.5 ft	12/1/04 1030	Sample was collected from water that was 2 ft deep. Sample was clear. Sample was located near the middle of US drum property.										
S106	1 ft	12/1/04 1130	Sample was collected from water that was 1.5 ft deep. Sample was clear. This sample was collected directly east of the former cache of drums that were located on US Drum.										
S107	1 ft	12/1/04 1145	Sample location was near where 119th Street was to be placed. Power lines are located at this area. Water was approximately 1.5 ft deep. Sample was clear.										
S108	surface	12/1/04 1200	Sample was collected from the surface water flowing through the culvert pipe. Sample was clear. Water has a landfill type odor. The surface water is flowing at a good pace from the culvert pipe.										
S109	1 ft	12/1/04 1215	Sample was collected in the northeast portion of the marsh for a potential background. Sample was collected from water with a depth of 1.5 ft. Sample was clear.										
S110	10 inches	12/2/04 0930	Sample was collected from the southeastern pond located on the Cluster site. Water was found to be about 1 ft. deep. Sample was clear.										
S111	10 inches	12/2/04 1030	The depth of water in this area was 1 ft. deep. This sample was collected from the ditch along the eastern edge of the Cluster site. Sample was fairly clear. This ditch usually holds water.										
			* <u></u>										

Sample Number	Sample Depth	Collection Date and Time	Sample Description
X201	2-12 inches	12/2/04 0750	This sample was collected from the NE portion of IRM. This location was selected due to being upstream of the culvert (possible background). Sample consisted of silty black sediments and brown peat material. Water in this area was 3 ft. deep.
X202	6-12 inches	12/1/04 1345	Water was 1 ft deep in this area. Sample consisted of a dark black mushy soft silty sediment. No rocks or gravel present. There was a slight organic smell to the sample. Sample collected from the eastern portion of the southern most lagoon. Clumps of vegetation present in the water.
X203	6-12 inches	12/1/04 1400	Sample consisted of a black mush silty sediment with organic debris. Red worms present in sample material. Water was approximately 1.5 ft deep in this area. Sample collected from the north portion of the southern lagoon area.
X204	0-12 inches	12/1/04 1410	Water was 3.5 deep in this area. Black silty sediment was collected and was evidently softer than the two previous samples. Sample was collected in the main channel near the southern end of the marsh.
X205	0-12 inches	12/1/04 1425	Sample consisted of black silts with some organic debris. Water was approximately 2.5 ft deep. Sample location was near the middle of the southern most lagoon area.
X206	0-12 inches	12/1/04 1425	Sample consisted of black silts with some organic debris. Water was approximately 2.5 ft deep. Sample location was near the middle of the southern most lagoon area. Duplicate of X205.
X207	0-12 inches	12/1/04 1445	This sample was collected from the marsh near the railroad ballasts at the southern end of IRM. Water was about 2 ft deep. Sample consisted of black silts with a small amount of gravel. Rainbow sheen appeared on the water surface when sample was being collected.
X208	12-24 inches	12/1/04 1455	Sample consisted of black silts, which were slightly smelly. Depth of water was 2.5 ft. Sample location was near the mouth of the straight away that empties into the southernmost lagoon area.
X209	6-12 inches	12/1/04 1510	Sample consisted of a black silt with gravel and gritty material. There were also some larger rocks present. Depth of water in this area was 2 ft deep. Location was approximately the middle of the Cluster site on the eastern side of IRM.
X210	6-12 inches	12/1/04 1520	This sample was collected from near the middle portion of IRM. The location of this sample was in the middle of the small lagoon with the majority of the duck decoys present. Sample consisted of fine sediments with some organic debris. Sediments were black with some gray. Depth of the water was 2 ft in this area.

ſ	Sample Number	Sample Depth	Collection Date and Time	Sample Description
. }				X211 was collected from the midpoint of the middle small lagoon area, more in the main channel of water
	X211	6-12 inches	12/1/04 1535	of IRM. Sample consisted of very fine black silts/sediments. Depth of water in this area was approximately 3 to 3.5 ft.
	X212	12-24 inches	12/1/04 1545	Sample was collected the area earmarked for 119th Street. Sample consisted of very little silts, sample was very gravelly and black in color. Sample has a very strong sediment/organic decomposition smell. Depth of water was 2.5 ft.
-	X213	6-12 inches	12/1/04 1600	Sample was collected approximately 160 ft into the marsh. Sample consisted of a spongy black silty sediment. Depth of water in the area was approximately 2 ft.
	X214	6-12 inches	12/1/04 1610	This sample was collected from the culvert outflow area. Sample consisted of silty black sediments with gravelly material some of this material being pinkish in color. Depth of the water in this area was 2 ft. deep.
	X215	2-10 inches	12/2/04 0740	This sample was collected approximately 200 ft east of the culvert outflow. Sample consisted of a silty black sediment and brown peat material. Water in this area was 1.5 ft deep.
	X216	2-12 inches	12/2/04 0830	Location of the sample was in an area of the marsh that is almost completely blocked off from the
	X217	2-12 inches	12/2/04 0930	Sample was collected from the southeast portion of the ponded are located in the southeast portion of the Cluster site. Sample was made of very fine silty clay which was black in color. The water depth in this area was 1 ft.
	X218	2-12 inches	12/2/04 0945	Sample was collected from the northeast portion of the ponded area located in the southeast portion of the Cluster site. Sample consisted of a soft black silt with some clay and some organic material. Depth of water was approximately 2 ft.
	X219	2-12 inches	12/2/04 1030	Sample was collected from the ditch located in the middle area of the eastern edge of the Cluster site. The sample consisted of a very fine silt with gray clay. Depth of water in this area was 1 ft deep.

Table 2
Key Inorganic Soil Samples

Sample Number :	ME0069		ME0067		ME0068		ME0070		ME0071	N. S.	ME0072	RELA	ME0073	17
Sampling Location :	X103		X101		X102		X104		X105	7	X106		X107	
Matrix:	Soil		Soil		Soil		Soil		Soil		Soil		Soil	
Units:	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Date Sampled :	11/30/2004		11/30/2004		11/30/2004		11/30/2004		11/30/2004		11/30/2004		11/30/2004	
Time Sampled :	09:30		09:00		09:10		10:45		11:30		12:15		13:00	
%Solids :	80.8		75.8		77.6		83.4		66.6		73.5		70.2	
Dilution Factor :	1		1		1		1		1		1		1	THE IN
ANALYTE	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	5740		1200		5040		8360		6570		6230	48	5040	
ANTIMONY	7.4	UJ	7.9	UJ	7.7	UJ	1.7	J	9	UJ	8.2	UJ	8.5	UJ
ARSENIC	21	11513	3		10.8	2019	7.8		7.5		6.8		5.3	
BARIUM	65.3	R	11.6	R	127	R	154	R	146	R	52.2	R	115	R
BERYLLIUM	0.37	J	0.1	J	0.6	J	1.3	J	1.2	J	0.4	J	0.93	J
CADMIUM	1		0.33	UJ	1.9		1.6		1.2		0.82		2.8	
CALCIUM	56200		40400		53700		56800		72000		57900	Phone I	55900	
CHROMIUM	15.6	J	5.1	J	114	J	49.8	J	18.5	J	16.8	J	126	J
COBALT	10.4		2.1	UJ	6.8		5.7	UJ	5.6	UJ	11.5		5	UJ
COPPER	29.7		16.2		53.7	The	24.3		28.4		28.8	1	64.1	
IRON	16800		5460	27	30700		14100		12500		15800	4	15200	2
LEAD	23.3	R	21.6	R	66.7	R	44.1	R	73.6	R	36.2	R	155	R
MAGNESIUM	23900		12800		23200		16600		21900		20400		18600	
MANGANESE	491		137	UR I	3520		3590		979		529		1880	
MERCURY	0.12	U	0.13	U	0.13	J-	0.09	J-	0.1	J-	0.13	J-	0.16	J-
NICKEL	23.2	J	5.5	J	16.4	J	12.7	J	14.5	J	29.9	J	48.4	J
POTASSIUM	2020	J	436	J	1400	J	1310	J	1620	J	2540	J	672	J
SELENIUM	4.3	U	4.6	U	0.7	J	0.56	J	0.6	J	4.8	U	0.82	J
SILVER	1.2	U	1.3	U	0.84	UJ	0.61	UJ	1.5	U	0.29	UJ	1.3	UJ
SODIUM	359	UJ	219	UJ	292	UJ	422	UJ	807	J	820	J	337	UJ
THALLIUM	3.1	UJ	3.3	UJ	3.2	UJ	3	UJ	3.8	UJ	3.4	UJ	3.6	UJ
VANADIUM	16.4	R	4.9	R	50.6	R	33.3	R	12.6	R	17.9	R	34	R
ZINC	84.4	bala i	42.5		181		137		133		81.5		278	
CYANIDE	0.07	U	0.07	U	0.14	U	2.7	J-	0.38	U	0.16	U	0.19	U

Table 2
Key Inorganic Soil Samples

Sample Number :	ME0073D		ME0074		ME0075		ME0076		ME0077		ME0078		ME0079		ME0080	A LONG
Sampling Location :	X107		X108		X109		X110		X111		X112		X113		X114	
Matrix:	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil	
Units:	mg/Kg	100	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Date Sampled :	11/30/2004		11/30/2004		11/30/2004		11/30/2004		11/30/2004		11/30/2004		11/30/2004		11/30/2004	
Time Sampled :	13:00		13:30		13:45		13:45		14:00		14:10		14:30		14:45	
%Solids :	72.8	Here	84		69.7		61.4		80.4		61.1		80.1		80.9	
Dilution Factor:	1		1	- 1	1		1		1		1		1		1	2.4
ANALYTE	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	4590		11400		5730		10100		11700		3910		3990		5510	
ANTIMONY	8.5	U	7.1	UJ	3	J	3.2	J	7.5	UJ	2.3	J	7.5	UJ	7.4	UJ
ARSENIC	4.2		12.5		12.9		13.9		4.7		8.9		4.7		10.1	
BARIUM	139		132	R	333	R	528	R	158	R	164	R	64.2	R	43	R
BERYLLIUM	0.83	100	0.82	J	0.9	J	1.4	J	1.9	J	0.55	J	0.56	J	0.34	J
CADMIUM	2.7	145	4.8		6.8		7.6		3.3		3		0.82		1.1	
CALCIUM	45100	188	112000		14500		31000	770	126000	The same	28100		123000		69600	
CHROMIUM	63.6		1240	J	39.9	J	59.2	J	365	J	105	J	26.5	J	41.6	J
COBALT	4.8	J	12.5		7.1	UJ	8.8		4.8	UJ	5.8	UJ	2.7	UJ	11.1	
COPPER	69.9	Vide	279	in the	276		274		91		378		34.7		49.4	
IRON	14400		63100		21400	88.5	24400		54100		48000		7690		20500	
LEAD	115		155	R	500	R	7740	R	566	R	. 271	R	70.1	R	47.1	R
MAGNESIUM	15500		37100		2770		7720		34700		5530		60800	100	26800	
MANGANESE	1850		12000		782	79.1	852	Pierk.	10000		2210	177-19	1020		1440	
MERCURY	0.12	J-	0.5	J-	2	J-	2.9	J-	0.04	J-	0.33	J-	0.14	J-	0.12	J-
NICKEL	18.8		639	J	92	J	46.1	J	20.6	J	105	J	8.8	J	26.8	J
POTASSIUM	903	-	1010	J	519	J	852	J	1240	J	585	J	1030	J	1610	J
SELENIUM	1	J	0.61	J	1.2	J	0.84	J	2.2	J	1.1	J	4.4	U	4.3	U
SILVER	0.99	J	2.9	100	5.2		5.4		0.84	UJ	2		1.2	U	0.38	UJ
SODIUM	346	J	656	J	299	UJ	929	J	731	J	229	UJ	340	UJ	321	UJ
THALLIUM	3.6	U	3	UJ	3.6	UJ	4	IJ	3.1	UJ	4.1	UJ	3.1	UJ	3.1	UJ
VANADIUM	27		448	R	30.5	R	33.9	R	137	R	16.2	R	18	R	29.3	R
ZINC	238		330		742		727		213		281		91.7		85.8	
CYANIDE	0.2	J-	0.47	U	1.5	U	1.3	U	1.1	U	0.41	U	0.22	U	0.1	U

Table 2
Key Inorganic Soil Samples

Sample Number :	ME0081		ME0082		ME0083		ME0084		ME0085		ME00B5		ME00B6		ME00C1	1000
Sampling Location :	X115		X116		X117		X118		X119	Des.	X120		X121		X122	
Matrix:	Soil	No.	Soil		Soil		Soil		Soil		Soil		Soil		Soil	
Units:	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	100
Date Sampled :	11/30/2004		11/30/2004		11/30/2004		11/30/2004		11/30/2004		12/2/2004		12/2/2004		12/2/2004	
Time Sampled :	15:00		15:15		15:50		16:00		16:10		10:00		10:10		10:40	
%Solids :	61.8		79.9		87.8		77.2		83.7		76.8		77.9		75	
Dilution Factor:	1		1	6- 111	1	1	1		1		1		1		1	-
ANALYTE	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	15900		3370		19500		21500		22800		6510		6450	3/4	5050	
ANTIMONY	2.4	J	7.5	UJ	6.8	UJ	14.4	J	1.6	J	7.8	U	7.7	U	7.9	U
ARSENIC	5.6		11.1	See S	5.8		8.3		3	14	10.9		8.1	43	14.1	J
BARIUM	235	R	91.2	R	342	R	285	R	245	R	137	R	186	R	133	R
BERYLLIUM	0.42	J	0.51	J	1.1	J	5.2	J	4.9	J	0.58	J	0.47	J	0.5	J
CADMIUM	5.1	2 16	3.1	1	5.4		5.6		1.3		1.1		2.6	100	4.7	J
CALCIUM	231000	7 40	63100		214000		127000		125000		52400		68900		13800	
CHROMIUM	546	J	111	J	4540	J	31.4	J	46	J	41.9		667		321	J
COBALT	6.3	UJ	3.5	UJ	6.1		7		3.3	UJ	4.7	J	8.4		15.6	
COPPER	37.1		15.8	Mark To	98.5		30.5		102	ma, T	107		87.9	18 4 12	129	
IRON	62100		55200		96600	1710	101000	0.00	15200		22100		39200	7350	111000	
LEAD	191	R	649	R	33.4	R	2680	R	113	R	189	R	200	R	352	R
MAGNESIUM	23500		8600		31400	50 49	18200		24000		18500		22300		4340	
MANGANESE	16900		6050	177	42400	218	2930		2360		1520		10600		1450	
MERCURY	0.15	J-	0.04	J-	0.15	J-	0.06	J-	0.11	U	0.11	J	0.18	1	0.45	J+
NICKEL	36.3	J	18	J	102	J	12.9	J	10.7	J	14.2		27.9	63.79	276	
POTASSIUM	1290	J	543	J	346	J	2350	J	2230	J	1510	J	1270	J	610	J
SELENIUM	0.94	J	4.4	U	8.7		2.2	J	1.9	J	4.6	U	1.7	J	2.7	J
SILVER	3.6		1.8		2		1.3	U	1.2	U	1	U	2	J-	5	J-
SODIUM	1040	J	355	UJ	296	UJ	1210	J	1250	J	1510	J	392	UJ	311	J
THALLIUM	4	UJ	3.1	UJ	7.9	J-	3.2	UJ	3	UJ	3.3	U	3.2	U	1.3	J
VANADIUM	228	R	61.5	R	719	R	26	R	14.7	R	22.2	R	152	R	20.6	R
ZINC	727		131		133		151		199		194		217		411	
CYANIDE	1.1	U	0.34	U	0.32	U	4.6	J-	3.7	J-	0.82	J	0.61	J	0.39	J

Table 2
Key Inorganic Soil Samples

Sample Number :	ME00C2		ME00C3	
Sampling Location :	X123		X124	
Matrix:	Soil		Soil	To The
Units:	mg/Kg		mg/Kg	
Date Sampled :	12/2/2004		12/2/2004	
Time Sampled :	10:45		11:35	
%Solids :	78.5		49.9	Mary .
Dilution Factor:	1		1	Direct
ANALYTE	Result	Flag	Result	Flag
ALUMINUM	10700		7390	
ANTIMONY	2.1	J	12	U
ARSENIC	17.7	J	10.1	J
BARIUM	233	R	118	R
BERYLLIUM	2.3	J	0.58	J
CADMIUM	5.6	J	4.2	J
CALCIUM	17100		69100	1 1
CHROMIUM	60.9	J	88.4	J
COBALT	10.4		11.1	Si.
COPPER	1260		95.3	2.74
IRON	51900		26700	FE.
LEAD	345	R	116	R
MAGNESIUM	3450		32900	
MANGANESE	756		1080	
MERCURY	0.82	J+	0.3	J+
NICKEL	72.9		37.7	
POTASSIUM	715	J	2270	J
SELENIUM	2.2	J	7	U
SILVER	3.7	J-	3.6	J-
SODIUM	517	J	582	J
THALLIUM	3.2	UJ	5	UJ
VANADIUM	24.5	R	22.7	R
ZINC	575		397	135
CYANIDE	0.99	J	1.2	J

Table 3
Key Inorganic Sediment Sample Results

	Background		Parling Land										5	
Sample Number :	ME0098	1	ME00B2		ME0097		ME00A0		ME00A1	TATO I	ME00A2		ME00A3	
Sampling Location :	X203		X201		X202		X204		X205		X206		X207	1
Matrix :	Soil		Soil		Soil	100	Soil		Soil		Soil		Soil	
Units:	mg/Kg	SATE OF	mg/Kg		mg/Kg	1	mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Date Sampled :	12/2/2004		12/2/2004		12/1/2004		12/1/2004		12/1/2004		12/1/2004		12/1/2004	L
Time Sampled :	14:00		07:50		13:45		14:10		14:25		14:25		14:45	
%Solids :	43.1		21.7		39.6		17.4		28		29.4		44.1	
Dilution Factor :	1		1		1		1		1		1		1	
ANALYTE	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	6730		5030		7870		5610		9550		10200		2720	
ANTIMONY	13.9	U	27.6	U	15.2	U	34.5	U	21.4	U	20.2	U	13.6	U
ARSENIC	6.3		12.8		7		10.8		17.2		16.3		5.1	
BARIUM	123	R	175	R	116	R	129	R	158	R	155	R	47.5	R
BERYLLIUM	0.59	J	0.7	J	0.6	J	0.46	J	0.81	J	0.76	J	0.42	J
CADMIUM	1.1	UJ	3	34.0	1.3	U	3		6.1	264	1.4	UJ	0.78	UJ
CALCIUM	13300		17900		8980		98000	2.40	9820		11500		26000	
CHROMIUM	13.5		31.6		18		46.9		33.4		33.2		12.6	
COBALT	7	J	5.1	J	7.2	J	10.4	J	7.7	J	9.2	J	3.9	J
COPPER	33.2		54.1		30.9		60.4		48.5		44		27.9	
IRON	16800		31700		19400		29800	L.	24300		25000		12700	
LEAD	50.3	R	202	R	60.6	R	159	R	153	R	109	R	61	R
MAGNESIUM	6120		2930		3150		11700		3690		4280		10900	
MANGANESE	225		488		245		1250		185		196	65.77	215	
MERCURY	0.21	U	0.17	J	0.11	J	0.3	J	0.15	J	0.12	J	0.14	J
NICKEL	18.9		20.6		20.2		27.3	100	26.1		28.9		11.3	
POTASSIUM	843	J	640	J	892	J	1710	J	1360	J	1500	J	916	J
SELENIUM	8.1	U	4.2	J	8.8	U	20.1	U	12.5	U	1.8	J	7.9	U
SILVER	0.81	J-	2	J-	1	J-	1.6	J-	1.5	J-	1.4	J-	0.85	J-
SODIUM	410		807	UJ	529	J	2840		938	J	856	J	2110	
THALLIUM	5.8	U	11.5	U	6.3	U	14.4	U	8.9	U	8.4	U	5.7	U
VANADIUM	20.3	R	23.8	R	23.5	R	24.4	R	32.3	R	32.7	R	11.4	R
ZINC	149	Carll Bary	544		156		555		271		198		136	
CYANIDE	0.58	J	28.3		6.3	U	27.5		0.63	J	8.5	U	2.6	J

Table 3
Key Inorganic Sediment Sample Results

Sample Number :	ME00A4	1	ME00A5		ME00A6		ME00A7		ME00A8		ME00A9		ME00B0		ME00B1	-
Sampling Location :	X208	Shiston	X209		X210		X211		X212		X213		X214		X215	
Matrix :	Soil		Soil	8 10 -	Soil		Soil		Soil		Soil	140	Soil		Soil	
Units:	mg/Kg	Band.	mg/Kg		mg/Kg		mg/Kg	800	mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Date Sampled :	12/1/2004		12/1/2004		12/1/2004	1	12/1/2004	100	12/1/2004		12/1/2004	L 10	12/1/2004		12/2/2004	144
Time Sampled :	14:55		15:10		15:20		15:35		15:45		16:00	Page 1	16:10		07:40	
%Solids :	36.5		38.3	10.7	20.4		32.3		56.9		22.9		70	4.1.1	13.3	100
Dilution Factor :	1	MARKE	1		1		1		1		1	A ren	1		1	2-9-1
ANALYTE	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	7640		3940		6730		3800	1	2630	NO V	6440		2560		9900	4
ANTIMONY	16.4	U	15.5	U	29.4	U	18.6	U	1.9	J	26.2	U	8.6	U	45.1	U
ARSENIC	10.7		11		23.4		7.8		5.7		17.9	1 1 2 2	2.7		24.8	
BARIUM	87	R	112	R	179	R	93.5	R	79.7	R	183	R	58.8	R	191	R
BERYLLIUM	0.55	J	0.57	J	0.75	J	0.38	J	0.59	J	0.8	J	0.36	J	1.3	J
CADMIUM	0.96	UJ	1.5		3.5		1.5	U	1.2		3.2		0.54	UJ	6.2	
CALCIUM	14000	THE NEW	31100		55200		72100		28900		29200		18200		46200	
CHROMIUM	20.8		21.3	15 E. J	32		18.1		15.2		43.6		7.6		84.8	
COBALT	8.5	J	5.9	J	7.4	J	6.2	J	3.3	J	6.8	J	3.2	J	7.7	J
COPPER	27.6	A COLUMN	283		62.9		33.3		49.2	1	65.9		18.2		102	
IRON	18800		18200	Sec.	29700		18900	1	18700		28800		9510		36200	170
LEAD	47	R	99.2	R	191	R	61.9	R	88.7	R	248	R	31.2	R	326	R
MAGNESIUM	4610		10900	10	7640		13900		3940	100	5220		5210		6290	100
MANGANESE	219		226		611		603	17.17%	226		462		313		646	
MERCURY	0.08	U	0.1	J	0.21	J	0.1	J	0.08	J	0.17	J	0.06	J	0.75	U
NICKEL	24.3	N Kall	16.1		25.6		16.8	ALC:	11		26.8		6.8		38.2	
POTASSIUM	1520	J	922	J	1440	J	1220	J	537	J	1070	J	424	J	1280	J
SELENIUM	1.7	J	9	U	17.2	U	10.8	U	0.82	J	15.3	U	5	U	26.3	U
SILVER	0.9	J-	1.2	J-	1.8	J-	1.2	J-	0.98	J-	2.2	J-	0.55	J-	2.8	J-
SODIUM	1130	UJ	976	UJ	1120	UJ	1160	UJ	582	UJ	946	UJ	380	UJ	1440	UJ
THALLIUM	6.8			U	12.3	U	7.7	U	4.4	U	10.9	U	3.6	U	18.8	U
VANADIUM	25.3	R	19.8	R	27.7	R	16.2	R	12	R	33.5	R	8	R	39.7	R
ZINC	156		228		471		385		157		441		120		849	
CYANIDE	20.9		19.8		2.8	J	17.7		3.2		0.95	J	0.96	J	5	J

Table 3
Key Inorganic Sediment Sample Results

Sample Number :	ME00B3		ME00B4	U.77.9	ME00B4D	KIK J	ME00B8		ME00C4		ME00C4D	
Sampling Location :	X216		X217	378.	X217		X218		X219	197	X219	
Matrix:	Soil		Soil	in an	Soil		Soil		Soil		Soil	1007
Units:	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	618
Date Sampled :	12/2/2004		12/2/2004		12/2/2004		12/2/2004		12/2/2004		12/2/2004	Charles Co
Time Sampled :	08:30		09:30		09:30	e in the	09:45		10:30		10:30	Pids.
%Solids :	54.4		37		35.9		30.9		50.6		52.2	
Dilution Factor:	1		1		1	No. of Contract of	1		1		1	
ANALYTE	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	7540	1	10300		9800		9880		6070		5080	
ANTIMONY	11	U	16.2	U	16.2	U	19.4	U	11.9	U	11.9	U
ARSENIC	8.3		7.4		6.9		8.1		6.6	J	5.2	
BARIUM	101	R	88.4	R	83.3	Sel-Sa	96.2	R	88.2	R	80	
BERYLLIUM	0.63	J	0.66	J	0.62	J	0.64	J	0.47	J	0.39	J
CADMIUM	1.7		1.9		1.8		1.9		1.8	J	1.6	
CALCIUM	6080		75800		71900	SE A	80600		77200		69200	
CHROMIUM	20.1		57.7	E Cast	54.7		56.5		44.3	J	28.7	
COBALT	6.8	J	14	NAME OF	13.4	J	12.4	J	8.4	J	7.4	J
COPPER	29.5		90.8		84.8		67.6	1	61.7		54	
IRON	18600		27600	(W)	25700		24400	19 mg	22200		18800	INE.
LEAD	82	R	129	R	122	1861	107	R	91.5	R	84.1	
MAGNESIUM	3230		20200		19000		23200		19900	111111111111111111111111111111111111111	17900	
MANGANESE	183		718		669		807		793	A TELL	706	
MERCURY	0.18	U	0.18	J	0.22	J	0.16	J	0.1	J+	0.13	J
NICKEL	22.5		47.1		44.7	- Section	35.8	18 15	28		22.1	RESEARCH TO SERVICE
POTASSIUM	1160	J	4290	J	4030	100-100	4540	J	2160	J	1800	
SELENIUM	6.4	U	9.5	U	9.5	U	11.3	U	6.9	U	0.82	J
SILVER	1	U	1.2	U	1.2	J	1.3	U	1.1	J-	0.9	J
SODIUM	335	UJ	3300	J	3270		5300	J	933	J	929	J
THALLIUM	4.6	U	6.8	U	6.8	U	8.1	U	4.9	UJ	4.9	U
VANADIUM	23.6	R	36.4	R	34.4	All Section	36.4	R	23.6	R	19.6	
ZINC	174		223		208		243		251		219	
CYANIDE	0.23	J	15.2		18.8		29.5	3-11-5	0.08	J	0.06	J

Table 4
Key Soil Samples Analyzed for Semivolatiles

Sample Number :	E0069		E0067		E0068		E0070		E0071		E0072		E0073		E0074		E0075		E0076		E0077		E0078	T
Sampling Location :	X103	E	X101		X102		X104		X105		X106		X107		X108		X109		X110		X111		X112	15
Matrix:	Soil																							
Units:	ug/Kg																							
Date Sampled :	11/30/2004		11/30/2004		11/30/2004	1	11/30/2004		11/30/2004		11/30/2004	-	11/30/2004		11/30/2004		11/30/2004		11/30/2004		11/30/2004	-0	11/30/2004	
Time Sampled :	09:30		09:00		09:10		10:45		11:30		12:15		13:00		13:30		13:45		13:45		14:00		14:10	
%Moisture :	19		15		15		20		24		30		27		15		38		32		20		36	
pH:	8.8		8.2	-	8.3		9.0		8.8		9.1		8.7		8.8		8.2		7.9		8.7		8.2	
Dilution Factor :	1.0		1.0		1.0		1.0		1.0		1.0		2.0		1.0		1.0		1.0		1.0		1.0	
Semivolatile Compound	Result	Flag																						
ACENAPHTHYLENE	410	U	380	U	41	J.	410	U	430	U	470	U	510	J	380	U	530	U	480	U	410	U	510	U
ACENAPHTHENE	410	U	380	U	380	U	410	U	430	U	470	U	140	J	380	U	530	U	480	U	52	J	53	J
DIBENZOFURAN	410	U	380	U	47	J	410	U	430	U	470	U	220	J	380	U	530	U	49	J	410	U	510	U
FLUORENE	410	U	380	U	380	U	410	U	430	U	470	U	320	J	380	U	530	U	480		410	U	510	U
PHENANTHRENE	54	J	380	U	230	J	96	J	150	J	430	J	3600		340	J	240	J	330	J	340	J	330	J
ANTHRACENE	410	U	380	U	380	U	410	U	430	U	110	J	1200		51	J	530	U	54	J	76	J	84	J
CARBAZOLE	410	U	380	U	380	U	410	U	430	U	70	J	240	J	51	J	530	U	480	U	410	U	510	U
FLUORANTHENE	77	J	49	J	330	J	250	J	300		880		5700		770		360	J	500		760		750	
PYRENE	41	J	51	-	340	J	240	J	320	J	790		5200	J	660	100	340	J	480		900		830	
BUTYLBENZYLPHTHALATE	410	U	380	U	380	U	410	U	430	U	470	U	900	U	39	J	480	J	320	J	74	J	510	U
BENZO(A)ANTHRACENE	410	U	380	U	190	J	130	J	180		440	J	2700		390		180	J	230	J	540		560	
CHRYSENE	43	J	41	J	280	J	210	J	240	J	500		2800		450		250	J	330	J	670		690	
BIS(2-ETHYLHEXYL)PHTHALATE	180	J	130	J	100	J	300	J	210	J	170	J	290	J	170	J ·	690		570		2100		250	J
DI-N-OCTYLPHTHALATE	410	U	380	U	380	U	410	U	430	U	470	U	900	U	380	U	530	U	480	U	410	U	510	U
BENZO(B)FLUORANTHENE	44	J	53	J	370	J	300	J	320	J	570		4300		650		340	J	450	J	1300		1400	
BENZO(K)FLUORANTHENE	410	U	380	U	100	J	78	J	140	J	220	J	1500		270	J	95	J	140	J	330	J	450	J
BENZO(A)PYRENE	410	U	43	J	210	J	150	J	190	J	400	J	3400		450		200	J	270	J	850		1100	
INDENO(1,2,3-CD)-PYRENE	410	U	380	U	130	J	96	J	120	J	160	J	1600		250	J	120	J	150	J	550		740	
DIBENZO(A,H)-ANTHRACENE	410	U	380		42	J	410	U	430	U	470	U	480	J	72		530	U	54		150	J	210	J
BENZO(G,H,I)PERYLENE	410	U	380	U	150	J	110	J	130	J	200	J	1800		290	J	170	J	220	J	730		1000	

Table 4
Key Soil Samples Analyzed for Semivolatiles

E0068	E0079		E0079DL		E0080		E0081		E0082		E0083		E0084		E0085		E00B5		E00B6		E00C1		E00C2		E00C3	
X102	X113		X113		X114		X115		X116		X117		X118		X119		X120		X121		X122		X123	1	X124	
Soil	Soil		Soil	110	Soil		Soil		Soil		Soil		Soil		Soil											
ug/Kg	ug/Kg		ug/Kg		ug/Kg		ug/Kg		ug/Kg	18.	ug/Kg															
11/30/2004	11/30/2004		11/30/2004		11/30/2004		11/30/2004		11/30/2004		11/30/2004		11/30/2004		11/30/2004		12/2/2004		12/2/2004		12/2/2004		12/2/2004		12/2/2004	
09:10	14:30		14:30		14:45		15:00	0.4	15:15		15:50		16:00		16:10		10:00		10:10		10:40		10:45		11:35	
15	25		25		19		47		23		15		22	(C)	19		20		18	1	38		27		34	
8.3	8.7		8.7		7.8	100	8.3		8.5	1	8.8		8.6		8.6		8.9		8.8		6.6		6.1		6.5	
1.0	10.0		25.0		2.0		1.0		1.0		1.0		1.0		1.0		1.0		2.0		4.0		2.0		4.0	
Result	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag														
41	4300	U	11000	U	810	U	610	U	430	U	380	U	420	U	400	U	410	U	790	U	2100	U	900	U	2000	U
380	2000	J	2300	J	810	U	610	U	430	U	380	U	420	U	400	U	410	U	790	U	2100	U	220	J	2000	U
47	820	J	11000	U	810	U	610	U	430	U	380	U	420	U	400	U	410	U	790	U	470	J	230	J	2000	U
380	2200	J	2500	J	810	U	610	U	430	U	380	U	420	U	400	U	410	U	790	U	240	J	210	J	2000	U
230	28000		29000		270	J	200	J	130	J	88	J	170	J	180	J	230	J	210	J	2200		2200		1300	J
380	7700		8000	J	810	U	610	U	430	U	380	U	420	U	43	J	57	J	790	U	410	J	500	J	310	J
380	2100	J	2400	J	120	J	610	U	430	U	380	U	420	U	400	U	410	U	790	U	2100	U	260	J	2000	U
330	68000		59000		750	J	390	J	270	J	190	J	310	J	400		350	J	260	J	2800		2500		2300	
340	53000		53000		630	J	390	J	240	J	190	J	280	J	370	J	460	1	330	J	2100		2300		2000	
380	4300	U	11000	U	810	U	120	J	430	U	380	U	420	U	400	U	410	U	790	U	2100	U	110	J	2000	U
190	27000		28000		290	J	180	J	160	J	150	J	220	J	270	J	240	J	160	J	1400	J	1400		1200	J
280	25000		28000		390	J	270	J	180	J	230	J	240	J	270	J	300	J	190	J	1400	J	1400		1300	J
100	4300	U	11000	U	310	J	1500		310	J	590		380	J	2700		100	J	790	U	2100	UJ	900	UJ	810	J
380	4300	U	11000	U	810	U	610	U	430	U	380	U	420	U	400	U	410	U	790	U	2100	U	900	U	2000	U
370	32000		33000		390	J	360	J	240	J	230	J	360	J	440		350	J	230	J	1700	J	1500		1600	J
100	12000		14000		200	J	140	J	110	J	110	J	150	J	180	J	130	J	97	J	610	J	550	J	660	J
210	24000		25000		310	J	210	J	160	J	150	J	260	J	320	J	230	J	790	U	860	J	910		1000	J
130	9800	4	11000		180	J	160	J	140	J	110	J	210	J	240	J	150	J	91	J	670	J	590	J	870	J
42	3400	J	3500	J	90	J	610	U	430	U	380	U	66	J	69	J	410		790	U	290	J	230	J	290	
150	11000		12000		220	J	200	J	160	J	130	J	240	J	290	J	410	U	790	U	2100	U	900	U	2000	U

Table 6
Key Soil Samples Analyzed for Pesticides/PCBs

Sample Number :	E0069		E0067		E0068		E0070		E0071		E0072		E0073	100	E0074	
Sampling Location :	X103	A.S.	X101		X102		X104		X105		X106		X107		X108	
Matrix:	Soil		Soil	1	Soil	10	Soil		Soil		Soil		Soil		Soil	
Units:	ug/Kg		ug/Kg		ug/Kg		ug/Kg									
Date Sampled :	11/30/2004		11/30/2004	120	11/30/2004		11/30/2004		11/30/2004	N. A.	11/30/2004		11/30/2004	1	11/30/2004	
Time Sampled :	09:30		09:00		09:10		10:45		11:30		12:15		13:00		13:30	
%Moisture :	19	Mal	15		15		20		24		30		27		0	
pH:	8.8		8.2		8.3		9.0		8.8		9.1		8.7		0.0	
Dilution Factor :	1.0		1.0		1.0		1.0	300	1.0		1.0		1.0		1.0	
Pesticide/PCB Compound	Result	Flag	Result	Flag	Result	Flag	Result	Flag								
BETA-BHC	2.1	U	2.0	U	2.0	U	2.1	U	2.2	U	2.4	U	2.3	U	1.7	U
HEPTACHLOR	2.1	U	2.0	U	2.0	U	2.1	U	2.2	U	2.4	U	2.3	U	1.7	U
ALDRIN	2.1	U	2.0	U	2.0	U	2.1	U	2.2	U	2.4	U	2.3	U	1.7	U
HEPTACHLOR EPOXIDE	2.1	U	2.0	U	2.0	U	2.1	U	2.2	U	2.4	U	2.3	U	1.7	U
DIELDRIN	4.0	U	3.9	U	3.9	U	4.1	U	4.3	U	4.7	U	4.5	U	3.3	U
4,4'-DDE	4.0	U	3.9	U	3.9	U	4.1	U	4.3	U	4.7	U	4.5	U	3.3	U
ENDRIN	4.0	U	3.9	U	3.9	U	4.1	U	4.3	U	4.7	U	4.5	U	3.3	U
4,4'-DDD	4.0	U	3.9	U	3.9	U	4.1	U	4.3	U	4.7	U	4.5	U	3.3	U
4,4'-DDT	4.0	U	3.9	U	3.9	U	4.1	U	18		4.7	U	4.5	U	3.3	U
METHOXYCHLOR	21	U	20	U	20	U	21	U	22	U	24	U	23	U	17	U
ENDRIN KETONE	4.0	U	3.9	U	3.9	U	4.1	U	4.3	U	4.7	U	4.5	U	3.3	U
ENDRIN ALDEHYDE	4.0	U	3.9	U	3.9	U	4.1	U	4.3	U	4.7	U	4.5	U	3.3	U
ALPHA-CHLORDANE	2.1	U	2.0	U	2.0	U	2.1	U	2.2	U	2.4	U	2.3	U	1.7	U
GAMMA-CHLORDANE	2.1	U	2.0	U	2.0	U	2.1	U	2.2	U	2.4	U	4.7	7	1.7	U
AROCLOR-1248	40	U	39	U	39	U.	41	U	43	U	47	U	45	U	33	U
AROCLOR-1254	40	U	39	U	43		41	U	43	U	47	U	96		51	
AROCLOR-1260	40	U	39	U	39	U	41	U	43	U	47	U	45	U	33	U

Table 6
Key Soil Samples Analyzed for Pesticides/PCBs

E0075			E0075DL		E0076		E0076DL		E0077		E0078		E0078DL		E0079		E0080		E0081	
X109			X109		X110	767	X110		X111	W 1	X112		X112		X113		X114		X115	
Soil	8	3	Soil		Soil		Soil		Soil		Soil									
ug/Kg			ug/Kg		ug/Kg		ug/Kg		ug/Kg		ug/Kg		ug/Kg		ug/Kg		ug/Kg		ug/Kg	
11/30/200	04		11/30/2004		11/30/2004		11/30/2004		11/30/2004		11/30/2004		11/30/2004		11/30/2004		11/30/2004		11/30/2004	
13:45			13:45	48	13:45		13:45	HAN	14:00		14:10		14:10		14:30		14:45		15:00	-
0			38		0		32		0		0		36	902.5	0		19	416	47	1
0.0		REAL PROPERTY.	8.2		0.0		7.9		0.0		0.0		8.2	S. y	0.0		7.8		8.3	
1.0			10.0		1.0		10.0		1.0		1.0	THE.	10.0		1.0		1.0	E.I.	1.0	
Result		Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
	1.7	U	27	U	1.7	U	25	U	1.7	U	1.7	U	26	U	1.7	U	2.1	U	4.8	
(6.8		27	U	15		36	J	1.7	U	- 32	1	26	U	1.7	U	2.1	U	3.2	U
	2.1		27	U	1.9	100	25	U	1.7	U	78		230	J	1.7	U	2.1	U	7.5	
	39		79		38		73	J	1.7	U	69	1	170	J	1.7	U	2.1	U	3.2	U
	3.3	U	53	U	3.3	U	48	U	3.3	U	3.3	U	51	U	3.3	U	4.1	U	6.2	U
4	4.3		53	U	4.5		48	U	3.3	U	14		51	U	6.0		4.1	U	6.2	U
	3.3	U	53	U	3.3	U	48	U	3.3	U	7.1	ME	51	U	3.3	U	4.1	U	6.2	U
	7.5		53	U	8.1	Shi	48	U	3.3	U	5.2		51	U	3.3	U	4.1	U	6.2	U
HI DAY	15		53	U	18		48	U	3.3	U	3.6	Die.	51	U	4.0	9	4.1	U	6.2	U
	31		270	U	43		250	U	17	U	17		260	U	17	U	21	U	32	U
:	3.3	U	53	U	3.3	U	48	U	3.3	U	3.3	U	51	U	3.3	U	4.1	U	6.2	U
	3.3	U	53	U	3.3	U	48	U	3.3	U	3.3	U	51	U	3.3	U	4.1	U	6.2	U
	26		69		23		50	J	1.7	U	15		43	J	1.7	U	2.1	U	3.2	U
	90	1	260		80		200	J	1.7	U	41		93	J	1.7	U	2.1	U	7.5	
1184.5	33	U	530	U	33	U	480	U	30		1800	100	5500		33	U	41	U	62	U
2	80		930		330		840		33	U	33	U	510	U	33	U	41	U	120	
4	40		1200		530		1400		33	U	210	T Alas	590		33	U	41	U	62	U

Table 6
Key Soil Samples Analyzed for Pesticides/PCBs

E0082	12	E0083	REL	E0084		E0085		E00B6		E00B5		E00C1		E00C2		E00C2DL		E00C3		E00C3DL	
X116		X117		X118		X119		X121		X120		X122		X123		X123		X124		X124	
Soil		Soil		Soil	100	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil	
ug/Kg		ug/Kg		ug/Kg		ug/Kg		ug/Kg		ug/Kg		ug/Kg		ug/Kg		ug/Kg		ug/Kg	V.v.	ug/Kg	
11/30/2004		11/30/2004		11/30/2004	17187	11/30/2004		12/2/2004		12/2/2004		12/2/2004		12/2/2004	2	12/2/2004		12/2/2004		12/2/2004	
15:15		15:50		16:00		16:10		10:10		10:00		10:40		10:45		10:45		11:35		11:35	
23		15		22		19		18		20		38		27		27		34		34	
8.5		8.8		8.6		8.6		8.8	1	8.9		6.6		6.1		6.1		6.5		6.5	
1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0		10.0		1.0		10.0	
Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
2.2	U	2.0	U	2.2	U	2.1	U	2.0	U	2.1	U	2.7	U	2.3	U	23	U	2.6	U	26	U
2.2	U	2.0	U	2.2	U	2.1	U	2.0	U	2.1	U	2.7	U	3.3		23	U	2.6	U	26	U
2.2	U	2.0	U	2.2	U	2.1	U	2.0	U	2.1	U	2.7	U	2.3	U	23	U	2.6	U	26	U
2.2	U	2.0	U	2.2	U	2.1	U	2.0	U	2.1	U	2.7	U	5.4		23	U	3.8	J	26	U
4.3	U	3.8	U	4.2	U	4.1	U	4.0	U	4.1	U	39		9.2		45	U	5.1	J	50	U
4.3	U	3.8	U	4.2	U	4.1	U	4.0	U	4.1	U	5.3	U	11		45	U	5.0	U	50	U
4.3	U	3.8	U	4.2	U	4.1	U	4.0	U	4.1	U	5.3	U	4.5	U	45	U	5.0	U	50	U
4.3	U	3.8	U	4.2	U	4.1	U	4.0	U	7.9	J	12		43		47	J	5.0	U	50	U
4.3	U	3.8	U	4.2	U	4.1	U	5.7		4.1	U	19		18		45	U	7.3	J	50	U
22	U	20	U	22	U	21	U	20	U	21	U	27	U	23	U	230	U	26	U	260	U
4.3	U	3.8	U	4.2	U	4.1	U	4.0	U	4.9	J	8.3		15		45	U	9.0	J	50	U
4.3	U	3.8	U	4.2	U	4.1	U	4.0	U	4.1	U	5.3	U	6.1		45	U	5.0	U	50	U
2.2	U	2.0	U	2.2	U	2.1	U	2.0	U	2.1	U	2.7	U	5.2		23	U	2.6	U	26	U
2.2	U	2.0	U	2.2	U	2.1		2.0	U	2.7	J	7.0		14		23	U	8.5	J	26	U
43	U	38	U	42	U	41	U	40	U	41	U	93		220		310		230		410	
43		38	U	42	U	41	Jan	40		57		53	U	45	U	450	U	50	U	500	
43	U	38	U	42	U	41	U	40	U	41	U	53	U	45	U	450	U	50	U	500	U

Table 5
Key Sediment Samples Analyzed for Semivolatiles

Sample Number :		E0098		E00B2		E0097		E00A0		E00A1		E00A2		E00A3		E00A4		E00A5	
Sampling Location :		X203		X201		X202		X204		X205		X206		X207		X208		X209	
Matrix :		Soil	K.	Soil															
Units:		ug/Kg		ug/Kg		ug/Kg		ug/Kg		ug/Kg		ug/Kg		ug/Kg		ug/Kg		ug/Kg	
Date Sampled :		12/1/2004		12/2/2004		12/1/2004		12/1/2004	4	12/1/2004		12/1/2004		12/1/2004		12/1/2004		12/1/2004	
Time Sampled :		14:00		07:50		13:45		14:10		14:25		14:25		14:45		14:55		15:10	
%Moisture :	CRQL	54		82		68		85		78		59		55		64		46	
pH:	ug/Kg	6.7		7.6		5.7		7.6		7.6		7.5		7.8		7.8		7.5	
Dilution Factor :		1.0		1.0		1.0		4.0		1.0	100	1.0		5.0		1.0		5.0	
Semivolatile Compound		Result	Flag																
BENZALDEHYDE	330	710	U	1800	U	1000	U	8700	U	1500	U	800	U	3700	U	900	U	3000	U
4-METHYLPHENOL	330	710	U	1800	U	1000	U	8700	U	1500	U	800	U	500	J	900	U	3000	U
NAPHTHALENE	330	710	U	1800	U	1000	U	8700	U	210	J	91	J	2100	J	130	J	1000	J
2-METHYLNAPHTHALENE	330	710	U	670	J	1000	U	8700	U	200	J	800	U	2600	J	170	J	1700	J
HEXACHLOROCYCLO-PENTADIENE	330	710	U	1800	U	1000	U	8700	U	1500	U	800	U	3700	U	900	U	3000	U
1,1'-BIPHENYL	330	710	U	1800	U	1000	U	8700	U	1500	U	800	U	3700	U	900	U	3000	U
2-CHLORONAPHTHALENE	330	710	U	1800	U	1000	U	8700	U	1500	U	800	J	3700	U	900	U	3000	U
ACENAPHTHYLENE	330	710	U	1800	U	1000	U	8700	U	1500	U	800	U	3700	U	900	U	3000	U
ACENAPHTHENE	330	710	U	360	J	1000	U	8700	U	1500	U	800	ט	3700	U	900	U	3000	U
DIBENZOFURAN	330	710	U	270	J	1000	U	8700	U	1500	U	800	٦	920	J	900	U	600	J
FLUORENE	330	710	U	240	J	1000	U	8700	U	1500	U	800	U	3700	U	900	U	3000	U
PHENANTHRENE	330	710	U	1800		260	J	. 1700	J	730	J	280	J	2100	J	320	J	2000	J
ANTHRACENE	330	710	U	380	J	1000	U	8700	U	1500	U	800	J	410	J	900	U	3000	U
CARBAZOLE	330	710	U	230	J	1000	U	8700	U	1500	U	800	U	3700	U	900	U	3000	U
FLUORANTHENE	330	710	U	2200		340	J	2600	J	950	J	370	J	2600	J	290	J	1200	J
PYRENE	330	710	U	2100	10	340	J	2400	J	890	J	350	J	2100	J	250	J	1100	J
BENZO(A)ANTHRACENE	330	710	U	2100		230	J	1700	J	690	J	270	J	1300	J	150	J	660	J
CHRYSENE	330	710	U	2300		290	J	1800	J	840	J	330	J	1600	J	210	J	830	J
BIS(2-ETHYLHEXYL)PHTHALATE	330	710	UJ	1800	UJ	1000	UJ	1700	J	1500	UJ	800	UJ	3700	U	900	UJ	3000	UJ
BENZO(B)FLUORANTHENE	330	710	U	2900		330	J	2300	J	940	J	430	J	1800	J	230	J	880	J
BENZO(K)FLUORANTHENE	330	710	U	1300	J	150	J	8700	U	680	J	200	J	810	J	95	J	350	J
BENZO(A)PYRENE	330	710	U	2900		310	J	1800	J	1000	J	330	J	1100	J	190	J	640	J
INDENO(1,2,3-CD)-PYRENE	330	710	U	1600	J	220	J	1300	J	750	J	230	J	820	J	130	J	390	J
DIBENZO(A,H)-ANTHRACENE	330	710	U	600	J	1000	U	8700	U	1500	U	800	U	3700	U	900	U	3000	U
BENZO(G,H,I)PERYLENE	330	710	U	1900		280	J	1600	J	880	J	270	J	880	J	170	J	440	J

Table 5
Key Sediment Samples Analyzed for Semivolatiles

Sample Number :	E00A6	1	E00A7		E00A8		E00A9		E00B0		E00B1		E00B3		E00B4		E00B8	
Sampling Location :	X210	de	X211	-1	X212		X213	1	X214	4.	X215		X216		X217		X218	
Matrix :	Soil	1	Soil	100	Soil													
Units :	ug/Kg		ug/Kg	4	ug/Kg													
Date Sampled :	12/1/2004		12/1/2004		12/1/2004		12/1/2004		12/1/2004	100	12/2/2004		12/2/2004		12/2/2004		12/2/2004	
Time Sampled :	15:20		15:35		15:45	1	16:00		16:10		07:40		08:30		09:30		09:45	100
%Moisture :	81		68	1 7	40		83	110	33		84		73		69	1500	68	
pH:	7.6		7.9		8.1		7.8	-03	8.1	6-10	7.6		7.0		8.0	200	8.1	
Dilution Factor :	3.0		6.0		6.0	No.	4.0		2.0		1.0	T.	1.0		6.0		4.0	
Semivolatile Compound	Result	Flag																
BENZALDEHYDE	5200	U	6200	U	3200	U	7700	U	980	U	2100	U	130	J	6300	U	4100	U
4-METHYLPHENOL	1400	J	6200	U	3200	U	7700	U	980	U	2100	U	1200	U	6300	U	4100	U
NAPHTHALENE	5200	U	830	J	1300	J	7700	U	620	J	2100	U	1200	U	6300	U	4100	U
2-METHYLNAPHTHALENE	1100	J	1100	J	1900	J	7700	U	1000		720	J	1200	U	6300	U	4100	U
HEXACHLOROCYCLO-PENTADIENE	5200	U	6200	U	3200	U	7700	U	980	U	2100	U	1200	U	6300	U	4100	U
1,1'-BIPHENYL	5200	U	6200	U	3200	U	7700	U	120	J	2100	U	1200	U	6300	U	4100	U
2-CHLORONAPHTHALENE	5200	U	6200	U	3200	U	7700	U	980	U	2100	U	1200	U	6300	U	4100	U
ACENAPHTHYLENE	5200	U	6200	U	3200	U	7700	U	560	J	2100	U	1200	U	6300	U	4100	U
ACENAPHTHENE	620	J	6200	U	3200	U	7700	U	410	J	530	J	1200	U	6300	U	4100	U
DIBENZOFURAN	5200	U	650	J	700	J	7700	U	610	J	260	J	1200	U	6300	U	4100	U
FLUORENE	5200	U	6200	U	3200	U	7700	U	580	J	240	J	1200	U	6300	UJ	4100	U
PHENANTHRENE	2500	J	2300	J	1900	J	1800	J	2600		2000	J	1200	U	1700	J	830	J
ANTHRACENE	5200	U	630	J	3200	U	7700	U	740	J	390	J	1200	U	6300	U	4100	U
CARBAZOLE	5200	U	6200	U	3200	U	7700	U	300	J	230	J	1200	U	6300	U	4100	U
FLUORANTHENE	2500	J	3200	J	1900	J	3300	J	3800		2400		130	J	3300	J	1300	J
PYRENE	2600	J	2700	J	1600	J	3000	J	3300	1	2300		130	J	3000	J	1600	J
BENZO(A)ANTHRACENE	2100	J	1800	J	1100	J	2000	J	2300		2200		1200	U	2000	J	640	J
CHRYSENE	2600	J	2100	J	1200	J	2900	J	2400		2600		1200	U	2200	J	690	J
BIS(2-ETHYLHEXYL)PHTHALATE	5200	UJ	6200	U	3200	U	7700	UJ	980	UJ	2100	UJ	260	J	4000	J	3500	J
BENZO(B)FLUORANTHENE	3500	J	2200	J	1500	J	3900	J	3500	19	3000		1200	U	2300	J	1000	J
BENZO(K)FLUORANTHENE	2000	J	1300	J	620	J	1300	J	1600	1	1600	J	1200	U	1100	J	4100	U
BENZO(A)PYRENE	3500	J	1600	J	890	J	2200	J	1900		3400		1200	U	2000	J	560	J
INDENO(1,2,3-CD)-PYRENE	2300	J	1100	J	660	J	940	J	540	J	2100		1200	U	1500	J	4100	U
DIBENZO(A,H)-ANTHRACENE	5200	U	6200	U	3200	U	7700	U	980	U	780	J	1200	U	6300	U	4100	U
BENZO(G,H,I)PERYLENE	2700	J	1100	J	640	J	1800	J	460	J	2600		1200	U	1600	J	4100	U

Table 7
Key Sediment Samples Analyzed for Pesticides/PCBs

Sample Number :	E0098		E00B2		E00B2DL		E0097		E00A0		E00A0DL		E00A1		E00A1DL	
Sampling Location :	X203		X201		X201		X202	7.4	X204		X204		X205		X205	£
Matrix:	Soil															
Units:	ug/Kg		ug/Kg		ug/Kg		ug/Kg	630	ug/Kg		ug/Kg		ug/Kg		ug/Kg	
Date Sampled :	12/1/2004		12/2/2004		12/2/2004		12/1/2004		12/1/2004		12/1/2004		12/1/2004		12/1/2004	
Time Sampled :	14:00		07:50		07:50		13:45		14:10		14:10		14:25		14:25	
%Moisture :	54		82		82		68		85		85		78		78	
pH:	6.7		7.6		7.6	81 1	5.7		7.6		7.6		7.6		7.6	
Dilution Factor :	1.0		1.0		10.0		1.0		1.0		10.0		1.0		10.0	
Pesticide/PCB Compound	Result	Flag														
ALPHA-BHC	3.7	U	9.4	U	94	U	5.3	U	11	U	110	U	7.6	U	76	U
GAMMA-BHC (LINDANE)	3.7	U	9.4	U	94	U	5.3	U	11	U	110	U	7.6	U	76	U
HEPTACHLOR EPOXIDE	3.7	U	9.4	U	94	U	5.3	U	11	U	110	U	7.6	U	76	Ü.
DIELDRIN	7.1	U	18	U	180	U	10	U	22	U	220	U	15	J	150	U
4,4'-DDE	7.1	U	41		180	U	33		85		220	U	110		150	U
4,4'-DDD	21	1	360		350		45		240		250	J	1200		1400	
4,4'-DDT	7.1	U	18	U	180	U	10	U	26		220	U	530		510	
ENDRIN KETONE	7.1	U	19		180	U	10	U	22	J	220	U	15	J	150	U
GAMMA-CHLORDANE	3.7	U	9.4	U	94	U	5.3	U	11	U	110	U	13		76	U
AROCLOR-1254	71	U	180	U	1800	U	100	U	220	U	2200	U	150	U	1500	U

Table 7
Key Sediment Samples Analyzed for Pesticides/PCBs

Sample Number :	E00A2		E00A2DL		E00A3		E00A3DL		E00A4		E00A5		E00A5DL		E00A6	
Sampling Location :	X206		X206		X207		X207		X208		X209		X209		X210	
Matrix:	Soil		Soil	1	Soil		Soil									
Units:	ug/Kg		ug/Kg													
Date Sampled :	12/1/2004		12/1/2004		12/1/2004		12/1/2004	Z-é	12/1/2004		12/1/2004	Sele	12/1/2004	Lune 1	12/1/2004	
Time Sampled :	14:25		14:25		14:45		14:45		14:55		15:10	Hall	15:10		15:20	
%Moisture :	59		59		55		55		64		46		46		81	
pH:	7.5		7.5		7.8		7.8		7.8		7.5		7.5		7.6	
Dilution Factor :	1.0		10.0		1.0	-	10.0		1.0		1.0		10.0		1.0	
Pesticide/PCB Compound	Result	Flag	Result	Flag												
ALPHA-BHC	4.1	U	41	U	3.8	U	38	U	4.7	U	3.1	U	31	U	8.9	U
GAMMA-BHC (LINDANE)	4.1	U	41	U	3.8	U	38	U	4.7	U	3.1	U	31	ט	8.9	U
HEPTACHLOR EPOXIDE	4.1	U	41	U	3.8	U	38	U	4.7	U	3.1	J	31	J	8.9	U
DIELDRIN	8.0	U	80	U	17		73	U	9.0	U	16		61	J	17	U
4,4'-DDE	20		80	U	46		73	U	9.9		330		360		180	
4,4'-DDD	200		200		150		200		58		160		210		1100	
4,4'-DDT	70		80	U	110		130		9.0	U	580		660		140	12
ENDRIN KETONE	8.0	U	80	U	13		73	U	9.0	U	13		61	U	. 17	U
GAMMA-CHLORDANE	4.1	U	41	U	3.8		38	U	4.7	U	3.1	U	31	U	8.9	U
AROCLOR-1254	80	U	800	U	73	U	730	U	90	U	61	U	610	U	170	U

Table 7
Key Sediment Samples Analyzed for Pesticides/PCBs

Sample Number :	E00A6DL		E00A7		E00A7DL		E00A8		E00A9		E00A9DL		E00B0	1	E00B0DL	18
Sampling Location :	X210		X211		X211	8	X212		X213		X213		X214	. 11	X214	
Matrix:	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil	
Units:	ug/Kg		ug/Kg	L.	ug/Kg		ug/Kg		ug/Kg		ug/Kg		ug/Kg		ug/Kg	
Date Sampled :	12/1/2004	9 30	12/1/2004		12/1/2004		12/1/2004		12/1/2004	MAN TO	12/1/2004		12/1/2004		12/1/2004	
Time Sampled :	15:20		15:35		15:35		15:45	13	16:00		16:00		16:10	965	16:10	
%Moisture :	81		68		68		40		83		83		33		33	
pH:	7.6		7.9	100	7.9		8.1		7.8		7.8		8.1		8.1	
Dilution Factor :	10.0		1.0		10.0		1.0		1.0		10.0		1.0		10.0	
Pesticide/PCB Compound	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALPHA-BHC	89	U	5.3	U	53	U	2.8	U	9.8	U	98	U	2.5	U	25	U
GAMMA-BHC (LINDANE)	89	U	5.3	U	53	U	2.8	U	9.8	U	98	U	2.5	U	25	U
HEPTACHLOR EPOXIDE	89	U	5.3	U	53	U	2.8	U	9.8	U	98	U	4.2		25	U
DIELDRIN	170	U	12		100	U	5.5		19	U	190	U	4.9	U	49	U
4,4'-DDE	190		47		100	U	25		190		210		10		49	U
4,4'-DDD	1400	No. 1	160		190		29		1100		1400		9.3		49	U
4,4'-DDT	170	U	340		410	1	18		560	1000	500		7.5		49	U
ENDRIN KETONE	170	U	16		100	U	9.9		19	U	190	U	9.1		49	U
GAMMA-CHLORDANE	89	U	5.3	U	53	U	6.5		19		98	U	2.9		25	U
AROCLOR-1254	1700	U	100	U	1000	U	55	U	190	U	1900	U	49	U	490	U

Table 7
Key Sediment Samples Analyzed for Pesticides/PCBs

Sample Number :	E00B1		E00B1DL		E00B3		E00B4		E00B4DL		E00B8		E00B8DL	Page 1
Sampling Location :	X215		X215		X216		X217		X217		X218		X218	
Matrix :	Soil		Soil	1000	Soil		Soil		Soil	W/b	Soil		Soil	
Units :	ug/Kg		ug/Kg		ug/Kg		ug/Kg		ug/Kg		ug/Kg	3114	ug/Kg	12.2
Date Sampled :	12/2/2004	The same	12/2/2004		12/2/2004		12/2/2004	100	12/2/2004	17 4.8	12/2/2004		12/2/2004	100
Time Sampled :	07:40		07:40		08:30		09:30		09:30		09:45		09:45	1
%Moisture :	84	P. ST.	84		73		69	N.B.	69		68	110	68	2.34
pH:	7.6		7.6		7.0		8.0	1	8.0		8.1		8.1	
Dilution Factor :	1.0		10.0		1.0		1.0		10.0		1.0		10.0	11-15
Pesticide/PCB Compound	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALPHA-BHC	11	U	110	U	6.3	U	6.5	J	54	U	11		52	U
GAMMA-BHC (LINDANE)	11	U	110	U	6.3	U	12	J	54	U	5.2	U	52	U
HEPTACHLOR EPOXIDE	11	U	110	U	6.3	U	17	J	54	U	41		52	U
DIELDRIN	20	U	200	U	12	U	10	UJ	100	U	10	U	100	U
4,4'-DDE	240		230		12	U	10	UJ	100	U	10	U	100	U
4,4'-DDD	2600		3100	150	69		10	UJ	100	U	10	U	100	U
4,4'-DDT	1000	7	960		12	U	10	UJ	100	U	10	U	100	U
ENDRIN KETONE	22		200	U	12	U	10	UJ	100	U	13		100	U
GAMMA-CHLORDANE	11	U	110	U	6.3	U	18	J	54	U	5.2	U	52	U
AROCLOR-1254	200	U	2000	U	120	U	270		650		100	U	1000	U

Figure 1
Site Location Map

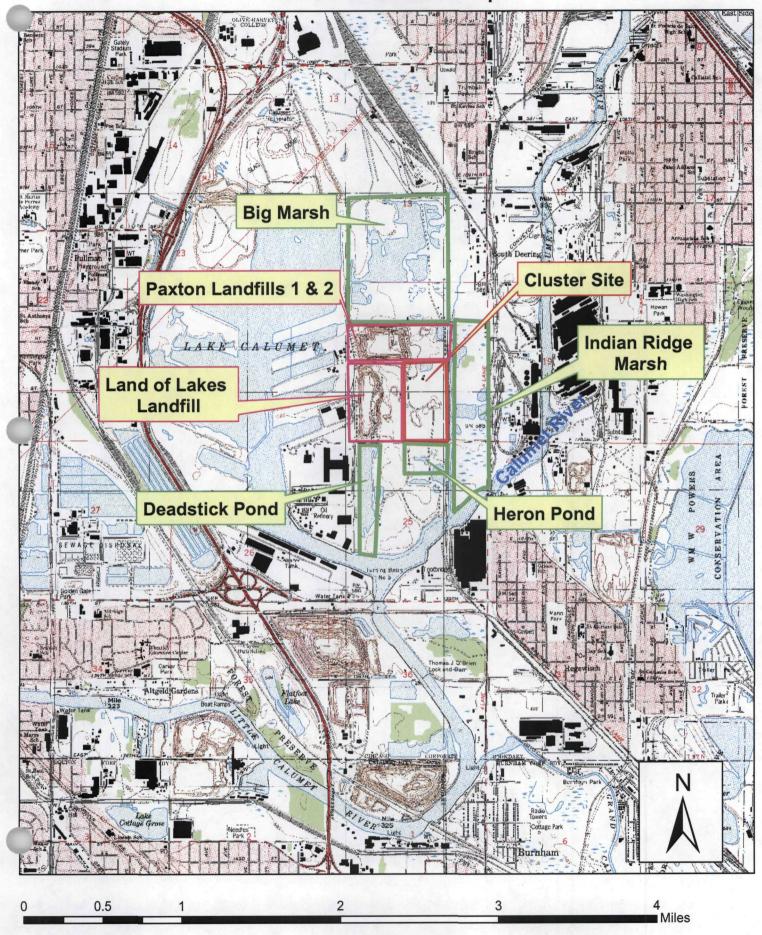
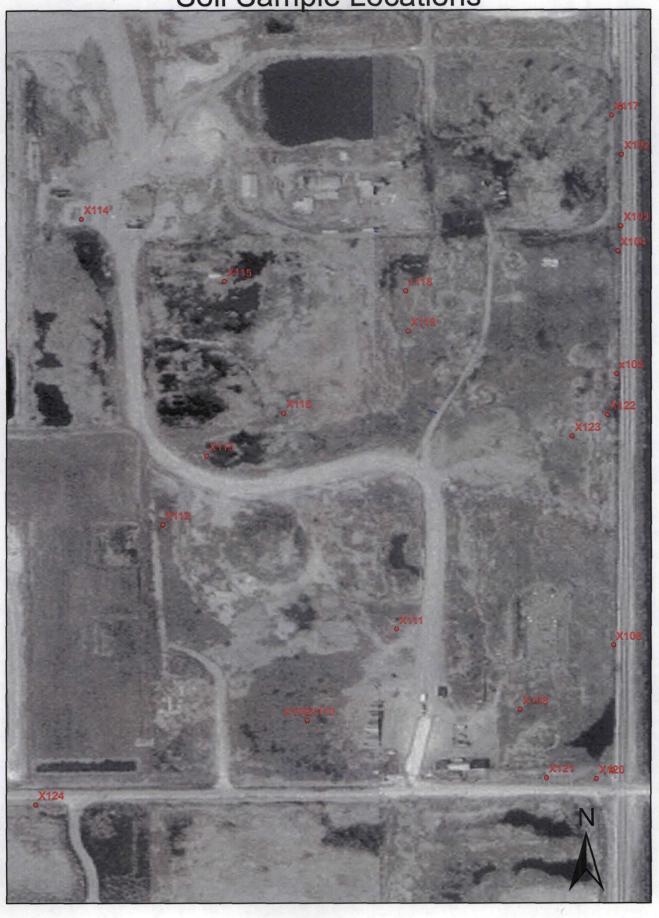



Figure 2
Soil Sample Locations

1,100

1,650

550

275

2,200 Feet Figure 3
Sediment Sample Locations

1,400

2,100

700

350

2,800 Feet Figure 4
Surface Water Sample Locations

0 345 690 1,380 2,070 2,760 Feet

Appendix 2 Photo Documentation of Sample Locations

SITE NAME: Lake Calumet Cluster Site

CERCLIS ID: ILD 000716852 COUNTY: Cook

DATE: November 30, 2004

TIME: 0900

PHOTO BY: L. Range

PHOTO NUMBER: 1

ROLL NUMBER: 1

DIRECTION: West

COMMENTS: Photo taken of X101. Located south of the culvert in the west ditch along the RR. Sample was collected from the ditch. Sample was collected from a depth of 6 to 15 inches. Sample consisted of a sandy silt of a mostly dark gray color.

DATE: November 30, 2004

TIME: 0910

PHOTO BY: L. Range

PHOTO NUMBER: 2

ROLL NUMBER: 1

DIRECTION: West

COMMENTS: Photo taken of sample X102. Located on the west side of the tracks in the ditch along RR. Sample consisted of a dark gray/brown loam with a few pieces of slag. Sample was collected from a depth of 2 to 4 inches.

SITE NAME: Lake Calumet Cluster Site

CERCLIS ID: ILD 000 716 852

COUNTY: Cook

DATE: November 30, 2004

TIME: 1030

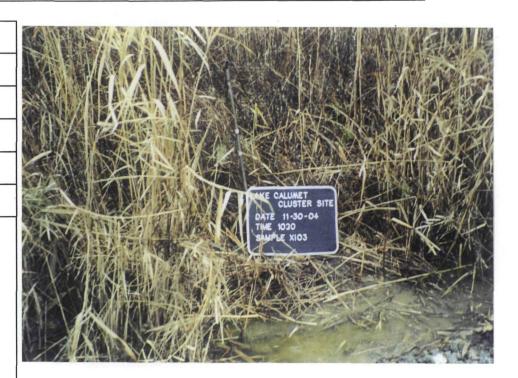

PHOTO BY: L. Range

PHOTO NUMBER: 3

ROLL NUMBER: 1

DIRECTION: West

COMMENTS: Photo taken of X103. Sample was collected from the embankment and consisted of a light brown/gray clay which was very stiff. Sample was collected from a depth of 4 to 10 inches below ground surface.

DATE: November 30, 2004

TIME: 1045

PHOTO BY: L. Range

PHOTO NUMBER: 4

ROLL NUMBER: 1

DIRECTION: West

COMMENTS: Photo taken of sample X104. Sample consisted of a brownish/gray sandy loam in an area suspected of an overland flow route for surface water. Sample was collected from the embankment from a depth of 6 to 12 inches.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: November 30, 2004

TIME: 1130

PHOTO BY: L. Range

PHOTO NUMBER: 5

ROLL NUMBER: 1

DIRECTION: West

COMMENTS: Photo taken of sample X105. Sample collected from a depth of 6 to 8 inches below ground surface from a clayey loam. Sample was collected from the embankment in an area suspected of overland flow.

DATE: November 30, 2004

TIME: 1215

PHOTO BY: L. Range

PHOTO NUMBER: 6

ROLL NUMBER: 1

DIRECTION: West

COMMENTS: Photo taken of sample X106. Sample collected from the embankment from a depth of 2 to 6 inches. Sample consisted of a gravely clay silt which was below a 2 inch gravely layer. Collected just above the water line in the ditch.

CERCLIS ID: ILD 000 715 852 COUNTY: Cook

DATE: November 30, 2004

TIME: 1300

PHOTO BY: L. Range

PHOTO NUMBER: 7

ROLL NUMBER: 1

DIRECTION: South

COMMENTS: Photo taken of sample X107. This sample was designated the MS/MSD.

Sample was collected from a depth of 4 to 6 inches. Sample location was near the intersection of RR and 122nd

Street. Sample consisted of a sandy loam with very little gravel. Just south is the ponded area located at the southeastern portion of the Cluster Site.

DATE: November 30, 2004

TIME: 1330

PHOTO BY: L. Range

PHOTO NUMBER: 1

ROLL NUMBER: 2

DIRECTION: West

COMMENTS: Photo taken of sample X108. Sample location was just east of the entrance trailer at the 122nd Street entrance. Sample was collected from a sandy brown loam with some slaggy material from a depth of 0 to 2 inches. Slag prevented collection at a deeper depth.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: December 1, 2004

TIME: 1345

PHOTO BY: L. Range

PHOTO NUMBER: 3

ROLL NUMBER: 2

DIRECTION: North

COMMENTS: Photo taken of samples X109 and X110 (duplicate). Sample consisted of a sandy loam mixed with some organic material, some slag present. These samples were collected from a depth of 6 to 12 inches below ground surface. Sample location was in the southern portion of the unnamed portion of the site.

DATE: November 30, 2004

TIME: 1400

PHOTO BY: L. Range

PHOTO NUMBER: 4

ROLL NUMBER: 2

DIRECTION: Northwest

COMMENTS: Photo taken of sample X111. This sample was collected from a depth of 2 to 4 inches from a sandy brown sandy loam in an area with slag pieces. Sample location was just to the west of the entrance road near the midpoint in correlation to the unnamed portion.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: November 30, 2004

TIME: 1410

PHOTO BY: L. Range

PHOTO NUMBER: 5

ROLL NUMBER: 2

DIRECTION: Northwest

COMMENTS: Photo taken of sample X112. Sample was located near the northwest corner of the unnamed parcel near the fence surrounding Paxton Avenue Lagoons. Sample was collected from a depth of 2 to 4 inches from a silty brown loam with some slaggy material present.

DATE: November 30, 2004

TIME:1430

PHOTO BY: L. Range

PHOTO NUMBER: 6

ROLL NUMBER: 2

DIRECTION: West

COMMENTS: Photo taken of X113. This sample was located in the area between the road and the portion known as Alburn. Sample was collected from a gray brown silty material with small rocks from a depth of 2 to 4 inches.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: November 30, 2004

TIME: 1445

PHOTO BY: L. Range

PHOTO NUMBER: 7

ROLL NUMBER: 2

DIRECTION: West

COMMENTS: Photo taken of sample X114. Sample location was the extreme northwest corner of the Cluster Site.

Sample was collected from a depth of 2 to 4 inches and consisted of a silty brown loam with gravel. Sample was collected from an area that had been graded sometime in the past, not recent. Wet photoboard makes it difficult to read.

DATE: November 30, 2004

TIME: 1500

PHOTO BY: L. Range

PHOTO NUMBER: 8

ROLL NUMBER: 2

DIRECTION: East

COMMENTS: Photo taken of sample X115. Sample location was from the Alburn portion. Sample was collected from a depth of 2 to 4 inches and consisted of a silty gravel and magenta/pink paint chips were present.

CERCLIS ID: ILD 000 716 852

COUNTY: Cook

DATE: November 30, 2004

TIME: 1515

PHOTO BY: L. Range

PHOTO NUMBER: 9

ROLL NUMBER: 2

DIRECTION: North

COMMENTS: Photo taken of sample X116. Sample location was south of the Alburn portion in a small stand of trees. Sample was collected from a depth of 2 to 4 inches and consisted of a reddish airy material. Caught a glimpse of wild dogs in this area.

DATE: November 30, 2004

TIME: 1550

PHOTO BY: L. Range

PHOTO NUMBER: 10

ROLL NUMBER: 2

DIRECTION: North

COMMENTS: Photo taken of sample X117. Sample location was in the northern portion of the site on the east side. Sample was collected from a depth of 2 to 4 inches and consisted of a slag material along with some fill material.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: November 30, 2004

TIME: 1600

PHOTO BY: L. Range

PHOTO NUMBER: 11

ROLL NUMBER: 2

DIRECTION: West

COMMENTS: Photo taken of sample X118. Sample was located to the east of the Alburn portion. Sample consisted of a brown slaggy loam with sand and was collected from a depth of 2 to 4 inches.

DATE: December 1, 2004

TIME: 1610

PHOTO BY: L. Range

PHOTO NUMBER: 12

ROLL NUMBER: 2

DIRECTION: South

COMMENTS: Photo taken of sample X119. Sample location was east of the Alburn portion in and area devoid of phragmites. Sample was collected at a depth of 2 to 4 inches and consisted of a fine slag to slag chunks.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: December 1, 2004

TIME: 0915

PHOTO BY: L. Range

PHOTO NUMBER: 1

ROLL NUMBER: 3

DIRECTION: North

COMMENTS: Photo taken of S101. Sample was collected from the southern portion of Indian Ridge Marsh (IRM). Sample was collected from a depth of 12 inches. Water depth was approximately 1.5 ft. Sample was pretty clear.

DATE: December 1, 2004

TIME: 1000

PHOTO BY: L. Range

PHOTO NUMBER: 2

ROLL NUMBER: 3

DIRECTION: South

COMMENTS: Photo taken of sample S102. Sample was collected from the mouth area opening into the southern lagoon area. Sample was collected from a depth of 1 ft. Water depth from this location was approximately 1.5 ft.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: December 1, 2004

TIME: 1015

PHOTO BY: L. Range

PHOTO NUMBER: 3

ROLL NUMBER: 3

DIRECTION: South

COMMENTS: Photo taken of samples S103. This sample location was near the north end of the first straight away. Sample was collected from a depth of 10 inches. Water depth at this location was approximately 12 inches deep. Sample was pretty clear.

DATE: December 1, 2004

TIME: 1030

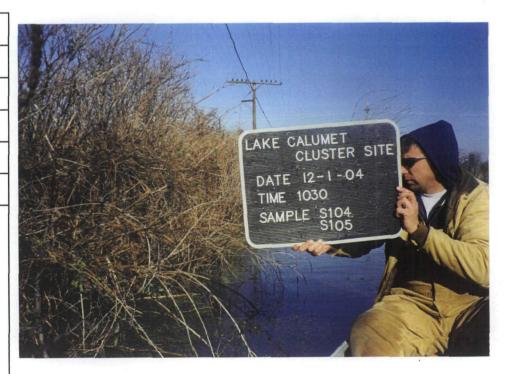

PHOTO BY: L. Range

PHOTO NUMBER: 4

ROLL NUMBER: 3

DIRECTION: North

COMMENTS: Photo taken of samples S104 and S105 (duplicate). This sample was located directly east of areas suspected of contamination from the US Drum activities. These samples were collected at a depth of 1.5 ft from water with a maximum depth of 2 ft. Samples were pretty clear.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: December 1, 2004

TIME: 1130

PHOTO BY: L. Range

PHOTO NUMBER: 5

ROLL NUMBER: 3

DIRECTION: South

COMMENTS: Photo taken of S106. Sample was located directly east from suspected areas of contamination on the US Drum parcel. S106 was collected from a depth of 1 ft from clear water. The water depth at this location was 1.5 ft.

DATE: December 1, 2004

TIME: 1145

PHOTO BY: L. Range

PHOTO NUMBER: 6

ROLL NUMBER: 3

DIRECTION: South

COMMENTS: Photo taken of S107. S107 was collected from the area to be used as 119th Street. S107 was collected from clean water at a depth of 1 ft. The depth of water at this location was approximately 1.5 ft deep.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: December 1, 2004

TIME: 1200

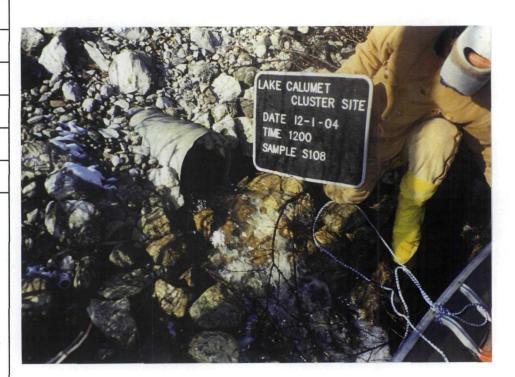

PHOTO BY: B. Everetts

PHOTO NUMBER: 7

ROLL NUMBER: 3

DIRECTION: Northwest

COMMENTS: Photo taken of sample S108. S108 was collected from the running water coming from the culvert pipe which was channeling water from the site into IRM. S108 was collected from clear water with a landfill type smell. Water was flowing at a good pace.

DATE: December 1, 2004

TIME: 1215

PHOTO BY: L. Range

PHOTO NUMBER: 8

ROLL NUMBER: 3

DIRECTION: East

COMMENTS: Photo taken of S109. S109 was collected in the northeastern portion of the marsh for a potential background. S109 was collected from a depth of 1 ft. Depth of water at this location was approximately 1.5 ft.

CERCLIS ID: ILD 000 716 852

COUNTY: Cook

DATE: December 1, 2004

TIME: 1345

PHOTO BY:L. Range

PHOTO NUMBER: 9

ROLL NUMBER: 3

DIRECTION: West

COMMENTS: Photo taken of X202. Sediment sample was collected in the eastern portion of the far south lagoon. Sample consisted of a dark black fine silt. Slightly organic smell. Sample was collected from a depth of 6 to 12 inches. Depth of water in this location was approximately 1.5 ft in depth.

DATE: December 1, 2004

TIME: 1400

PHOTO BY:L. Range

PHOTO NUMBER: 10

ROLL NUMBER: 3

DIRECTION: West

COMMENTS: Photo taken of sample X203. This sample location was in the eastern portion of the southern part of the marsh. Sample consisted of a black soft silt with some organic debris. Sample was collected from a depth of 6 to 12 inches. Water in this are was found to be 1.5 ft deep.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: December 1, 2004

TIME: 1410

PHOTO BY:L. Range

PHOTO NUMBER: 11

ROLL NUMBER: 3

DIRECTION: Southwest

COMMENTS: Photo taken of X204. This sample location was at the southern end of the main channel that runs the length of the IRM. Sample consisted of a black silt which was very soft. Depth of water at this location was approximately 3.5 ft deep.

DATE: December 1, 2004

TIME: 1415

PHOTO BY:L. Range

PHOTO NUMBER: 12

ROLL NUMBER: 3

DIRECTION: Southwest

COMMENTS: Photo taken of three fishermen in the area of the intersection of 122nd Street and the Norfolk Southern Railroad tracks.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: December 1, 2004

TIME: 1425

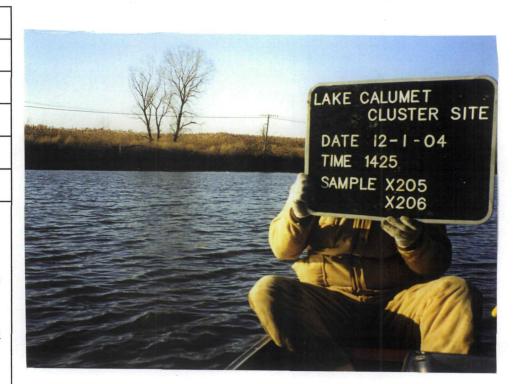

PHOTO BY: L. Range

PHOTO NUMBER: 1

ROLL NUMBER: 4

DIRECTION: Northwest

COMMENTS: Photo taken of X205 and X206 (duplicate). These samples were collected in the southern portion of the south lagoon area. These samples consisted of a black silt with some organic material. Water in this area is approximately 2.5 ft deep.

DATE: December 1, 2004

TIME: 1445


PHOTO BY: L. Range

PHOTO NUMBER: 2

ROLL NUMBER: 4

DIRECTION: East

comments: Photo taken of samples X207. This sample was collected near the western edge of the marsh just east of the pond located in the southeastern portion of the Cluster Site. X207 consisted of black silts with some gravel, possibly railbed material. Sheen appeared on water surface after sample collection. Water from this location was approximately 2 ft deep.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: December 1, 2004

TIME: 1455

PHOTO BY: L. Range

PHOTO NUMBER: 3

ROLL NUMBER: 4

DIRECTION: West

COMMENTS: Photo taken of X208. Sample was collected from a black silt which was slightly smelly. Sample was collected from a depth of 1 to 2 ft. Water in this area was found to be at a depth of 2.5 ft. Sample location was closer to the northern portion of the southern lagoon area.

DATE: December 1, 2004

TIME: 1510

PHOTO BY: L. Range

PHOTO NUMBER: 4

ROLL NUMBER: 4

DIRECTION: Southwest

COMMENTS: Photo taken of X209. X209 was located directly east of the ditch area that is usually filled with water. X209 consisted of a black silty sediment with gravel, grit and some larger rocks. Sample was collected from 0 to 12 inches. Water in this area was approximately 2 ft deep.

CERCLIS ID: ILD 000 716 852

COUNTY: Cook

DATE: December 1, 2004

TIME: 1520

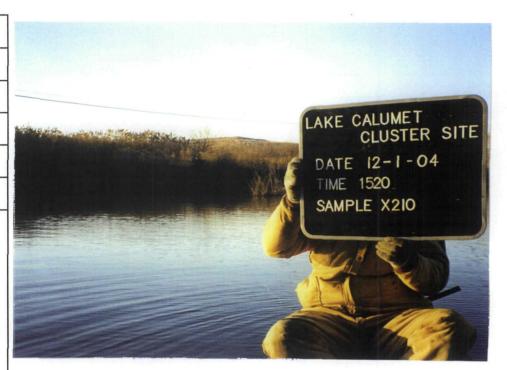

PHOTO BY: L. Range

PHOTO NUMBER: 5

ROLL NUMBER: 4

DIRECTION: Northwest

comments: Photo taken of sample X210. Sample was located in the middle lagoon area near the southern portion of this lagoon. X210 consisted of fine silts with some organic material (black with some gray). Sample was collected from the 0 to 12 inch range. Water in this location was approximately 2 feet deep.

DATE: December 1, 2004

TIME: 1535

PHOTO BY: L. Range

PHOTO NUMBER: 6

ROLL NUMBER: 4

DIRECTION: West

COMMENTS: Photo taken of sample X211. Sample was located near the middle of the middle lagoon of IRM. Sample consisted of very fine black silts. Depth of the water in this location was approximately 3 to 3.5 feet deep.

CERCLIS ID: ILD 000 716 852

COUNTY: Cook

DATE: December 1, 2004

TIME: 1545

PHOTO BY: L. Range

PHOTO NUMBER: 7

ROLL NUMBER: 4

DIRECTION: Southwest

COMMENTS: Photo taken of X212. This location was located at the area designated to be the crossing of 119th Street and the RR tracks. Power lines run over this location. X212 consisted of a smelly very gravelly fill with not much sediment, this was black in color. Sample was collected from a depth of 1 to 2 feet. Water level in this area was approximately 2.5 ft deep.

DATE: December 1, 2004

TIME: 1600

PHOTO BY:L. Range

PHOTO NUMBER: 8

ROLL NUMBER: 4

DIRECTION: West

COMMENTS: Photo taken of sample X213. This sample was located north and east of the power lines crossing the RR tracks. This sample consisted of black silts that were of a spongy consistency. This sample was collected from a depth of 0-12 inches. This location was found to be covered by 2 ft of water.

CERCLIS ID: ILD 000 716 852

COUNTY: Cook

DATE: December 1, 2004

TIME: 1610

PHOTO BY: B. Everetts

PHOTO NUMBER: 9

ROLL NUMBER: 4

DIRECTION: West

COMMENTS: Photo taken of sample X214. This location was at the area where the culvert was expelling water into IRM. The sample consisted of black sediments with pink gravely material. Depth of water at this location was approximately 1.5 ft.

DATE: December 2, 2004

TIME: 0740

PHOTO BY: L. Range

PHOTO NUMBER: 10

ROLL NUMBER: 4

DIRECTION: West

comments: Photo taken of sample X215. This sample location was located east and slightly south of the culvert area. Sample consisted of a fine black silt and also of brown peat material. Sample was collected from a depth of 2 to 10 inches. Water in this location was found to be 1.5 feet deep.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: December 2, 2004

TIME: 0750


PHOTO BY: L. Range

PHOTO NUMBER: 11

ROLL NUMBER: 4

DIRECTION: West

COMMENTS: Photo taken of Sample X201. Sample was collected from the northeastern portion of the marsh. This location was selected for the possibility of a background (location was upstream of the culvert). Sample consisted of a silty black silt and brown peat material. Sample was collected 2-12 inches from 3 ft of water.

DATE: December 2, 2004

TIME: 0830


PHOTO BY: L. Range

PHOTO NUMBER: 1

ROLL NUMBER: 5

DIRECTION: West

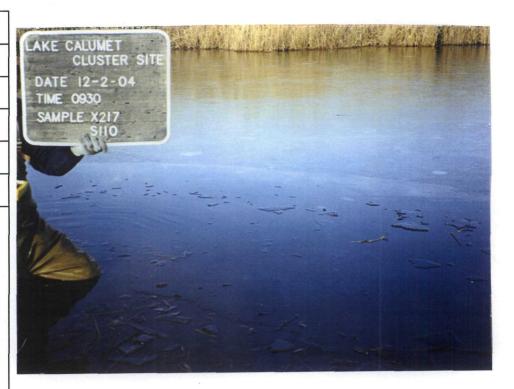
COMMENTS: Photo taken of sample X216. This sample was collected from an area almost blocked off from the main channel of marsh. Areas in this section were deeper up to 9 ft in areas. Sample consisted of very fine silts with some organic material. Sample was black and gray in color. Sample was collected from 2-12 inches in depth from 3 ft. of water.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: December 2, 2004

TIME: 0930

PHOTO BY: L. Range


PHOTO NUMBER: 2

ROLL NUMBER: 5

DIRECTION: Northwest

COMMENTS: Photo taken of sample X217 and S110. S110 was collected from a depth of 10 inches from a clear water.

Water depth was 1 ft. X217 was collected from the SE portion of the pond. Sample consisted of very fine silty black clay. Depth of sample was 2-12 inches.

DATE: December 2, 2004

TIME: 0945

PHOTO BY: L. Range

PHOTO NUMBER: 3

ROLL NUMBER: 5

DIRECTION: East

comments: Photo taken of sample X218. X218 was collected from the northeast corner of the pond located on the Cluster site. Sample was collected from a depth of 2-12 inches. Sample consisted of soft black silts with some black clay and organic material. Depth of water was 2 ft.

CERCLIS ID: ILD 000 716 852

COUNTY: Cook

DATE: December 2, 2004

TIME: 1000

PHOTO BY: L. Range

PHOTO NUMBER: 4

ROLL NUMBER: 5

DIRECTION: North

COMMENTS: Photo taken of sample X120. X120 was collected from the ditch located on the south boundary of the Cluster site, paralleling 122nd St. Sample consisted of a brown sand with very little silt. Sample was collected from a depth of 2-9 inches. Strange smell detected.

DATE: December 2, 2004

TIME: 1010

PHOTO BY: L. Range

PHOTO NUMBER: 5

ROLL NUMBER: 5

DIRECTION: North

COMMENTS: Photo taken of sample X121. This sample was also collected from the ditch area. Sample consisted of a dry loam that was brown in color. Sample was collected from a depth of 2-12 inches. Sample also contained phragmites roots and debris.

CERCLIS ID: ILD 000 716 852

COUNTY: Cook

DATE: December 2, 2004

TIME: 1030

PHOTO BY: L. Range

PHOTO NUMBER: 6

ROLL NUMBER: 5

DIRECTION: East

COMMENTS: Photo taken of sample X219 and S111. S111 was collected from the ditch along the eastern edge of the Cluster site. Surface water sample was collected at a depth of 10 inches and was clear. Depth of water was 1 ft. X219 consisted of a very fine silt with gray clay. Sample was collected from a depth of 2-12 inches.

DATE: December 2, 2004

TIME: 1040

PHOTO BY: L. Range

PHOTO NUMBER: 7

ROLL NUMBER: 5

DIRECTION: East

COMMENTS: Photo taken of X122. The sample was collected just west of the side ditch with standing water. Sample consisted of a loamy soil with a reddish tint with some organic material. Location also had glass, slag and some type of plastic material. Sample was collected from a depth of 2-10 inches.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: December 2, 2004

TIME: 1045

PHOTO BY: L. Range

PHOTO NUMBER: 8

ROLL NUMBER: 5

DIRECTION: South

COMMENTS: Photo taken of samples X123. This sample was collected just east of the sand/slag piles in the middle of the Cluster site. Sample consisted of an organic sand with glass and slag bits. Sample was collected from a depth of 4-6 inches.

DATE: December 2, 2004

TIME: 1135

PHOTO BY: L. Range

PHOTO NUMBER: 9

ROLL NUMBER: 5

DIRECTION: North

COMMENTS: Photo taken of samples X124. This sample was collected from the southside of 122nd Street, near the biosolids processing plant from an area that appeared natural. Sample was collected from a depth of 2-9 inches. Sample consisted of a dark brown/gray loamy clay. Possible location for a background soil sample.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: December 1, 2004

TIME: 1700

PHOTO BY: T. Crause

PHOTO NUMBER: 27

ROLL NUMBER: 1

DIRECTION: North

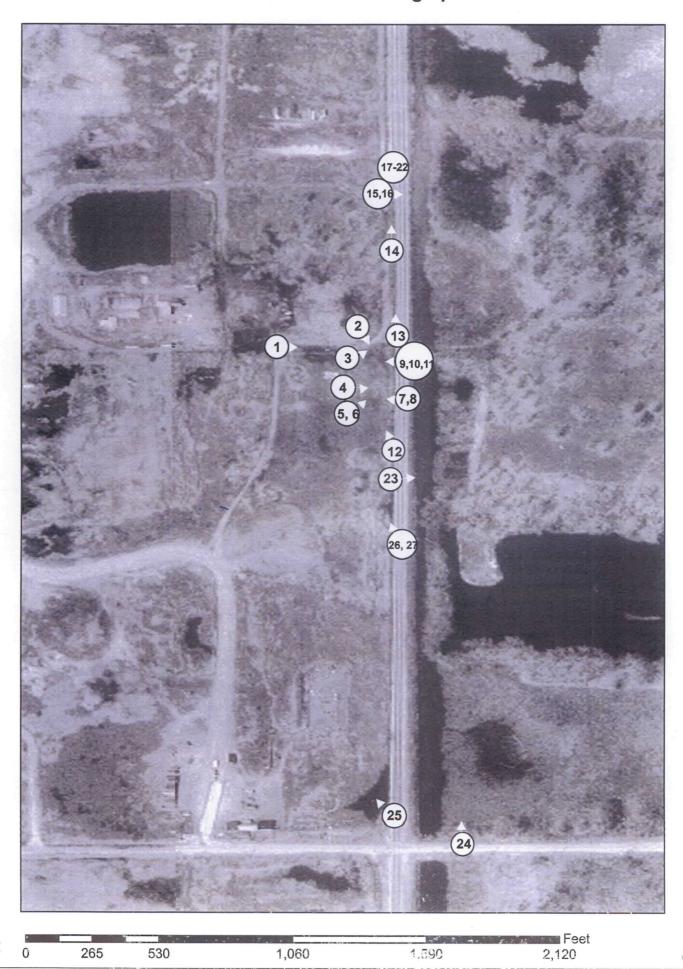
COMMENTS: Photo taken from the southeastern corner of the small wetland area located south of the US Drum portion and north of the unnamed parcel. Photos taken from railroad tracks towards the north document conditions of the wetland area.

DATE:

TIME:

PHOTO BY:

PHOTO NUMBER:


ROLL NUMBER:

DIRECTION:

COMMENTS:

Appendix 3 Photo Documentation of Overland Flow

Overland Flow Photographs

1,590

265

530

CERCLIS ID: ILD 000716852 COUNTY: Cook

DATE: December 1, 2004

TIME: 1445

PHOTO BY: T. Crause

PHOTO NUMBER: 1

ROLL NUMBER: 1

DIRECTION: East

COMMENTS: Taken from the Northwest corner of the US Drum property, towards the east. Photo documents standing water on the US Drum Property.

DATE: December 1, 2004

TIME: 1450

PHOTO BY: T. Crause

PHOTO NUMBER: 2

ROLL NUMBER: 1

DIRECTION: Southeast

COMMENTS: Photo taken of from the northern boundry of the US Drum property. Photo taken towards the southeast. Photo documents standing water on the US Drum property.

CERCLIS ID: ILD 000 716 852

COUNTY: Cook

DATE: December 1, 2004

TIME: 1453

PHOTO BY: T. Crause

PHOTO NUMBER: 3

ROLL NUMBER: 1

DIRECTION: Northeast

COMMENTS: Photo taken of from the north central portion of the US Drum Property. Phot taken towards the northeast. Documents standing water on the eastern portions of the US Drum site before entering the Railroad ditch.

DATE: December 1, 2004

TIME: 1455

PHOTO BY: T. Crause

PHOTO NUMBER: 4

ROLL NUMBER: 1

DIRECTION: East

COMMENTS: Photo taken from the northeast portion of the US Drum property. Photo taken towards the east. Documents standing water as it flows through tall grass just before entering the railroad ditch.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: December 1, 2004

TIME: 1500

PHOTO BY: T. Crause

PHOTO NUMBER: 5

ROLL NUMBER: 1

DIRECTION: Northeast

COMMENTS: Photo taken from the east central portion of the US Drum property. Photo taken towards the northeast. Documents standing water on the US Drum site leaving the site before flowing into the western railroad ditch.

DATE: December 1, 2004

TIME: 1504

PHOTO BY: T. Crause

PHOTO NUMBER: 6

ROLL NUMBER: 1

DIRECTION: North

COMMENTS: Photo taken from the same location as photo 5, but more towards the north. Documents standing water on the US Drum property flowing into the western railroad ditch.

CERCLIS ID: ILD 000 715 852 COUNTY: Cook

DATE: December 1, 2004

TIME: 1520

PHOTO BY: T. Crause

PHOTO NUMBER: 7

ROLL NUMBER: 1

DIRECTION: West

COMMENTS: Photo taken from the western railroad ditch adjacent to US Drum site. Photo taken towards the west, documents the surface water flowing from the US Drum site and entering the western railroad ditch.

DATE: December 1, 2004

TIME: 1525

PHOTO BY: T. Crause

PHOTO NUMBER: 8

ROLL NUMBER: 1

DIRECTION: West

COMMENTS: Photo taken from the railroad ditch and documents surface waters flowing from US Drum property into the western railroad ditch. Same location as photo 7.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: December 1, 2004

TIME: 1525

PHOTO BY: T. Crause

PHOTO NUMBER: 9

ROLL NUMBER: 1

DIRECTION: West

COMMENTS: Photo taken from the railroad ditch and documents surface waters flowing from US Drum property into the western railroad ditch.

DATE: December 1, 2004

TIME: 1400

PHOTO BY: T. Crause

PHOTO NUMBER: 10

ROLL NUMBER: 1

DIRECTION: West

COMMENTS: Photo taken from the railroad ditch and documents surface waters flowing from US Drum property into the western railroad ditch.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: December 1, 2004

TIME: 1410

PHOTO BY: T. Crause

PHOTO NUMBER: 11

ROLL NUMBER: 1

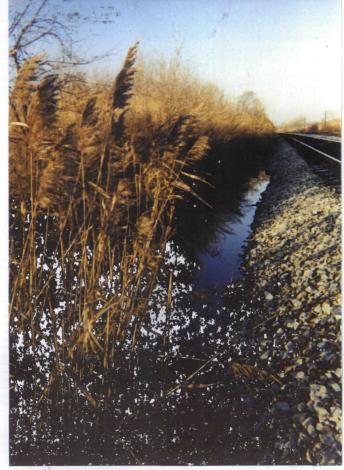
DIRECTION: West

COMMENTS: Photo taken from the railroad ditch and documents surface waters flowing from US Drum property into the western railroad ditch.

DATE: December 1, 2004

TIME: 1540

PHOTO BY: T. Crause


PHOTO NUMBER: 12

ROLL NUMBER: 1

DIRECTION: North

COMMENTS: Photo taken from the western railroad ditch adjacent to the US Drum site. Photo taken towards the north documents surface water within ditch as it flows north towards the culvert running under the railroad tracks and flowing into Indian Ridge Marsh.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: December 1, 2004

TIME: 1550

PHOTO BY: T. Crause

PHOTO NUMBER: 13

ROLL NUMBER: 1

DIRECTION: North

COMMENTS: Photo taken from the western railroad ditch east of the northern border of US Drum property. Photo taken towards the north documents surface waters within ditch as they flow north to the culvert.

DATE: December 1, 2004

TIME: 1555

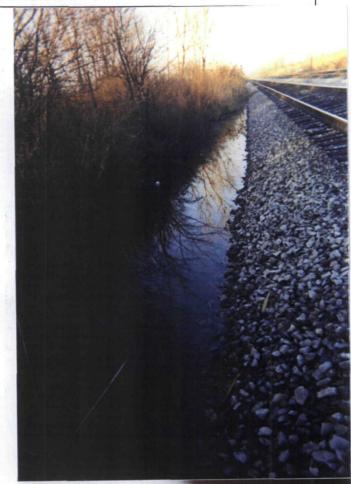

PHOTO BY: T. Crause

PHOTO NUMBER: 14

ROLL NUMBER: 1

DIRECTION: North

COMMENTS: Photo taken from the western railroad ditch approximately 15 yards south of the culvert. Photo taken towards the north. Culvert which lies under tracks can be seen in the background. But hard to distinguish in photo.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: December 1, 2004

TIME: 1600

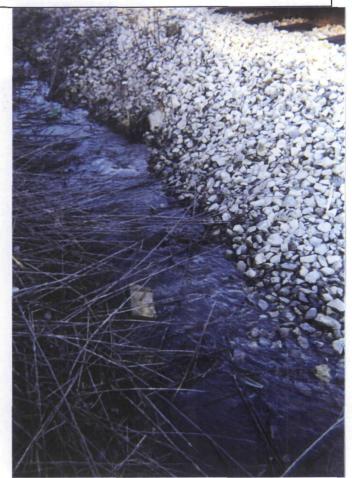

PHOTO BY: T. Crause

PHOTO NUMBER: 15

ROLL NUMBER: 1

DIRECTION: North

COMMENTS: Photo taken from the western railroad ditch approximately 5 yards south of the culvert. Photos taken towards the north documents surface waters from the western railroad ditch entering culvert which flows into IRM.

DATE: December 1, 2004

TIME: 1600

PHOTO BY: T. Crause

PHOTO NUMBER: 16

ROLL NUMBER: 1

DIRECTION: Northeast

COMMENTS: Photo taken from the western railroad ditch approximately 5 yards south of the culvert. Photos taken towards the northeast documents surface waters from the western railroad ditch entering culvert which flows into IRM.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: December 1, 2004

TIME: 1605

PHOTO BY: T. Crause

PHOTO NUMBER: 17

ROLL NUMBER: 1

DIRECTION: East

COMMENTS: Photo taken from the Railroad tracks at the point where the culvert empties into IRM. Photos taken towards the east and document the flow of surface waters from the western railroad ditch into IRM.

DATE: December 1, 2004

TIME: 1605

PHOTO BY: T. Crause

PHOTO NUMBER: 18

ROLL NUMBER: 1

DIRECTION: East

COMMENTS: Photo taken from the Railroad tracks at the point where the culvert empties into IRM. Photos taken towards the east and document the flow of surface waters from the western railroad ditch into IRM.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: December 1, 2004

TIME: 1605

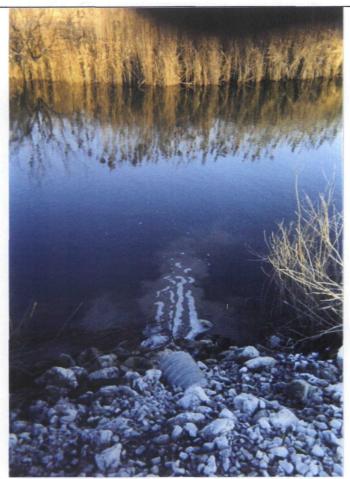

PHOTO BY: T. Crause

PHOTO NUMBER: 19

ROLL NUMBER: 1

DIRECTION: East

COMMENTS: Photo taken from the Railroad tracks at the point where the culvert empties into IRM. Photos taken towards the east and document the flow of surface waters from the western railroad ditch into IRM.

DATE: December 1, 2004

TIME: 1605

PHOTO BY: T. Crause

PHOTO NUMBER: 20

ROLL NUMBER: 1

DIRECTION: East

COMMENTS: Photo taken from the Railroad tracks at the point where the culvert empties into IRM. Photos taken towards the east and document the flow of surface waters from the western railroad ditch into IRM.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: December 1, 2004

TIME: 1605

PHOTO BY: T. Crause

PHOTO NUMBER: 21

ROLL NUMBER: 1

DIRECTION: East

COMMENTS: Photo taken from the Railroad tracks at the point where the culvert empties into IRM. Photos taken towards the east and document the flow of surface waters from the western railroad ditch into IRM.

DATE: December 1, 2004

TIME: 1605

PHOTO BY: T. Crause

PHOTO NUMBER: 22

ROLL NUMBER: 1

DIRECTION: East

COMMENTS: Photo taken from the Railroad tracks at the point where the culvert empties into IRM. Photos taken towards the east and document the flow of surface waters from the western railroad ditch into IRM.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: December 1, 2004

TIME: 1630

PHOTO BY: T. Crause

PHOTO NUMBER: 23

ROLL NUMBER: 1

DIRECTION: East

COMMENTS: Photo taken from the railroad tracks near the southern border of the US Drum property. Photo taken towards the east documents duck decoys and bird boxes within IRM.

DATE: December 1, 2004

TIME: 1650

PHOTO BY: T. Crause

PHOTO NUMBER: 24

ROLL NUMBER: 1

DIRECTION: North

COMMENTS: Photo taken the northeast corner of the intersection of 122^{nd} Street and the railroad tracks. Photo taken towards the north as a panoramic view of the southwest portion of IRM.

CERCLIS ID: ILD 000 716 852 COUNTY: Cook

DATE: December 1, 2004

TIME: 1655

PHOTO BY: T. Crause

PHOTO NUMBER: 25

ROLL NUMBER: 1

DIRECTION: North

COMMENTS: Photo taken from the southeast corner of the wetland located on the southeast portion of the unnamed portion of the site. Photo taken towards the north shows the Paxton II landfill in the background.

DATE: December 1, 2004

TIME: 1700


PHOTO BY: T. Crause

PHOTO NUMBER: 26

ROLL NUMBER: 1

DIRECTION: North

COMMENTS: Photo taken from the southeastern corner of the small wetland area located south of the US Drum portion and north of the unnamed parcel. Photos taken from railroad tracks towards the north document conditions of the wetland area.

